Spaces:
Sleeping
Sleeping
File size: 4,379 Bytes
8ba055a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
write an automl streamlit python tensorflow keras application with mechanics that takes a CSV dataset, performs pandas profiling and generates the code to do classification
Here is an example of an Automated Machine Learning (AutoML) Streamlit application that takes a CSV dataset, performs pandas profiling, and generates the code to do classification using TensorFlow and Keras:
python
Copy code
import streamlit as st
import pandas as pd
import pandas_profiling
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.model_selection import train_test_split
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
st.title("AutoML Streamlit App")
# Upload a CSV dataset
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"])
if uploaded_file is not None:
# Load the dataset and display the first 5 rows
df = pd.read_csv(uploaded_file)
st.dataframe(df.head())
# Perform pandas profiling and display the report
profile = pandas_profiling.ProfileReport(df)
st.write("Pandas Profiling Report:", profile)
# Split the data into features and target variables
X = df.drop(df.columns[-1], axis=1)
y = df[df.columns[-1]]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Define a sequential model with TensorFlow and Keras
model = Sequential()
model.add(Dense(16, input_dim=X_train.shape[1], activation="relu"))
model.add(Dense(1, activation="sigmoid"))
# Compile the model
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
# Train the model
model.fit(X_train, y_train, epochs=10, batch_size=32)
# Evaluate the model on the test set
test_loss, test_accuracy = model.evaluate(X_test, y_test)
st.write("Test Accuracy:", test_accuracy)
# Generate the code to do classification
st.write("Generated Code:")
st.code("""
import pandas as pd
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Load the dataset
df = pd.read_csv("dataset.csv")
# Split the data into features and target variables
X = df.drop(df.columns[-1], axis=1)
y = df[df.columns[-1]]
# Define a sequential model with TensorFlow and Keras
model = Sequential()
model.add(Dense(16, input_dim=X.shape[1], activation="relu"))
model.add(Dense(1, activation="sigmoid"))
# Compile the model
model.compile(loss="binary_crossentropy", optimizer="
Aaron Wacker
continue writing the program above but simplify it and automatically generate a plotly visualization using treemap and sunburst plot from the dataset dynamically by interpreting the data types inside the CSV file
Here is a simplified version of the AutoML Streamlit application that automatically generates a Plotly visualization using treemap and sunburst plots from the CSV dataset dynamically by interpreting the data types inside the file:
python
Copy code
import streamlit as st
import pandas as pd
import plotly.express as px
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
st.title("AutoML Streamlit App")
# Upload a CSV dataset
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"])
if uploaded_file is not None:
# Load the dataset and display the first 5 rows
df = pd.read_csv(uploaded_file)
st.dataframe(df.head())
# Generate a treemap or sunburst plot based on data types
numerical_cols = df.select_dtypes(include=["float", "int"]).columns
categorical_cols = df.select_dtypes(include=["object"]).columns
if len(numerical_cols) >= 2:
fig = px.scatter_matrix(df, dimensions=numerical_cols)
st.plotly_chart(fig)
elif len(categorical_cols) >= 2:
fig = px.treemap(df, path=categorical_cols)
st.plotly_chart(fig)
else:
fig = px.sunburst(df, path=categorical_cols + numerical_cols)
st.plotly_chart(fig)
In this simplified version, we use Plotly Express to generate a scatter matrix plot for numerical data, a treemap plot for categorical data, and a sunburst plot for both numerical and categorical data. The type of plot generated is based on the number of numerical and categorical columns present in the dataset.
Regenerate response
|