Spaces:
Sleeping
Sleeping
File size: 2,366 Bytes
695d63f 2d0356a 7901fc5 94c0eb7 7901fc5 c34d627 17899fd 6811fb6 c6b3e48 7194376 006465f 5a48b1a 7194376 006465f 7194376 006465f 7194376 6811fb6 83caf2e 7194376 6f6882a 006465f 2984bac f37ced0 08ea8eb 847cbae 7901fc5 1dd38d8 7194376 7901fc5 dfaf5f4 f37ced0 1c18727 f37ced0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import pybase64 as base64
import pandas as pd
import streamlit as st
import seaborn as sns
from data_cleaning import preprocess
from transformers import pipeline
from data_integration import scrape_all_pages
page_bg_img = """
<style>
.stApp > header { background-color: transparent;}
.stApp {
background: rgb(80,255,235);
background: linear-gradient(90deg, rgba(80,255,235,1) 0%,
rgba(0,0,255,1) 50%, rgba(188,0,255,1) 92%);
background-size: 150% 150%;
animation: my_animation 30s ease infinite;
}
@keyframes my_animation {
0% {background-position: 0% 0%;}
25% { background-position: 0% 0%;}
50% {background-position: 100% 100%;}
75% {background-position: 100% 100%;}
100% {background-position: 0% 0%;}
}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
#st.image("logo.png", width=200, height=200)
st.image("logo.png", width=80)
st.subheader(':violet[NLP HUB®]')
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model')
@st.cache_resource(experimental_allow_widgets=True)
def load_model():
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
return sentiment_model
model = load_model()
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
url = st.text_input("Amazon product link", sample_url)
st.button("Re-run")
st.write("Done")
st.subheader('', divider='rainbow')
try:
all_reviews = scrape_all_pages(url)
# Convert to DataFrame for further analysis
reviews = pd.DataFrame(all_reviews)
reviews['processed_text'] = reviews['content'].apply(preprocess)
# st.dataframe(reviews, use_container_width=True)
# st.markdown(sentiment_model(['It is Super!']))
sentiments = []
for text in reviews['processed_text']:
if list(model(text)[0].values())[0] == 'LABEL_1':
output = 'Positive'
else:
output = 'Negative'
sentiments.append(output)
reviews['sentiments'] = sentiments
st.markdown(':white[Output]')
st.dataframe(reviews, use_container_width=True)
# sns.countplot(reviews['sentiments'])
except KeyError:
st.markdown('Please :red[Re-run] the app')
|