Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,54 +6,28 @@ from data_cleaning import preprocess
|
|
6 |
from transformers import pipeline
|
7 |
from data_integration import scrape_all_pages
|
8 |
|
9 |
-
#@st.cache_data
|
10 |
-
#def get_img_as_base64(file):
|
11 |
-
# with open(file, "rb") as f:
|
12 |
-
# data = f.read()
|
13 |
-
# return base64.b64encode(data).decode()
|
14 |
-
|
15 |
-
|
16 |
-
#img = get_img_as_base64("image.jpg")background-image: url("data:image/png;base64,{img}");
|
17 |
|
18 |
|
19 |
page_bg_img = """
|
20 |
<style>
|
21 |
-
.stApp > header {
|
22 |
-
background-color: transparent;
|
23 |
-
}
|
24 |
-
|
25 |
.stApp {
|
26 |
-
|
27 |
background: rgb(80,255,235);
|
28 |
-
background: linear-gradient(90deg, rgba(80,255,235,1) 0%,
|
|
|
29 |
background-size: 150% 150%;
|
30 |
-
animation: my_animation
|
31 |
}
|
32 |
-
|
33 |
@keyframes my_animation {
|
34 |
-
0% {
|
35 |
-
|
36 |
-
}
|
37 |
-
|
38 |
-
|
39 |
-
}
|
40 |
-
50% {
|
41 |
-
background-position: 100% 100%;
|
42 |
-
}
|
43 |
-
75% {
|
44 |
-
background-position: 100% 100%;
|
45 |
-
}
|
46 |
-
100% {
|
47 |
-
background-position: 0% 0%;
|
48 |
-
}
|
49 |
}
|
50 |
-
|
51 |
</style>
|
52 |
"""
|
53 |
-
|
54 |
-
# background-image:
|
55 |
-
# radial-gradient(at 40% 20%, hsla(266,100%,49%,1) 0px, transparent 50%),
|
56 |
-
# radial-gradient(at 80% 0%, hsla(189,100%,56%,1) 0px, transparent 50%);
|
57 |
st.markdown(page_bg_img, unsafe_allow_html=True)
|
58 |
#st.image("logo.png", width=200, height=200)
|
59 |
|
@@ -63,23 +37,25 @@ st.markdown("")
|
|
63 |
st.markdown("")
|
64 |
st.markdown("")
|
65 |
st.markdown("")
|
66 |
-
|
67 |
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model')
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
st.
|
74 |
-
st.
|
75 |
-
st.
|
|
|
|
|
|
|
|
|
76 |
|
77 |
try:
|
78 |
all_reviews = scrape_all_pages(url)
|
79 |
# Convert to DataFrame for further analysis
|
80 |
reviews = pd.DataFrame(all_reviews)
|
81 |
reviews['processed_text'] = reviews['content'].apply(preprocess)
|
82 |
-
|
83 |
# st.dataframe(reviews, use_container_width=True)
|
84 |
# st.markdown(sentiment_model(['It is Super!']))
|
85 |
|
|
|
6 |
from transformers import pipeline
|
7 |
from data_integration import scrape_all_pages
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
page_bg_img = """
|
12 |
<style>
|
13 |
+
.stApp > header { background-color: transparent;}
|
|
|
|
|
|
|
14 |
.stApp {
|
|
|
15 |
background: rgb(80,255,235);
|
16 |
+
background: linear-gradient(90deg, rgba(80,255,235,1) 0%,
|
17 |
+
rgba(0,0,255,1) 50%, rgba(188,0,255,1) 92%);
|
18 |
background-size: 150% 150%;
|
19 |
+
animation: my_animation 30s ease infinite;
|
20 |
}
|
|
|
21 |
@keyframes my_animation {
|
22 |
+
0% {background-position: 0% 0%;}
|
23 |
+
25% { background-position: 0% 0%;}
|
24 |
+
50% {background-position: 100% 100%;}
|
25 |
+
75% {background-position: 100% 100%;}
|
26 |
+
100% {background-position: 0% 0%;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
}
|
|
|
28 |
</style>
|
29 |
"""
|
30 |
+
|
|
|
|
|
|
|
31 |
st.markdown(page_bg_img, unsafe_allow_html=True)
|
32 |
#st.image("logo.png", width=200, height=200)
|
33 |
|
|
|
37 |
st.markdown("")
|
38 |
st.markdown("")
|
39 |
st.markdown("")
|
|
|
40 |
st.subheader('Amazon Sentiment Analysis using FineTuned :red[GPT-2] Pre-Trained Model')
|
41 |
|
42 |
+
@st.cache_resource
|
43 |
+
def load_model():
|
44 |
+
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
|
45 |
+
sample_url = 'https://www.amazon.in/Dell-Inspiron-i7-1255U-Processor-Platinum/product-reviews/B0C9F142V6/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
|
46 |
+
url = st.text_input("Amazon product link", sample_url)
|
47 |
+
st.button("Re-run")
|
48 |
+
st.write("Done")
|
49 |
+
st.subheader('', divider='rainbow')
|
50 |
+
return sentiment_model
|
51 |
+
|
52 |
+
model = load_model()
|
53 |
|
54 |
try:
|
55 |
all_reviews = scrape_all_pages(url)
|
56 |
# Convert to DataFrame for further analysis
|
57 |
reviews = pd.DataFrame(all_reviews)
|
58 |
reviews['processed_text'] = reviews['content'].apply(preprocess)
|
|
|
59 |
# st.dataframe(reviews, use_container_width=True)
|
60 |
# st.markdown(sentiment_model(['It is Super!']))
|
61 |
|