Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +19 -0
- data_cleaning.py +33 -0
- data_integration.py +88 -0
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import seaborn as sns
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
|
6 |
+
sentiment_model = pipeline(model="sentiment-analysis")
|
7 |
+
|
8 |
+
st.write('Hi')
|
9 |
+
|
10 |
+
sentiments = []
|
11 |
+
for text in df['clean_text']:
|
12 |
+
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
|
13 |
+
output = 'Positive'
|
14 |
+
else:
|
15 |
+
output = 'Negative'
|
16 |
+
sentiments.append(output)
|
17 |
+
|
18 |
+
df['sentiments'] = sentiments
|
19 |
+
sns.countplot(df['sentiments'])
|
data_cleaning.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import nltk
|
3 |
+
nltk.download('stopwords')
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
nltk.download('punkt')
|
6 |
+
from nltk import sent_tokenize,word_tokenize
|
7 |
+
from nltk.stem.snowball import SnowballStemmer
|
8 |
+
|
9 |
+
|
10 |
+
def normalize(text):
|
11 |
+
return(text.lower())
|
12 |
+
|
13 |
+
def remove_stopwords(text):
|
14 |
+
list_stopwords = stopwords.words("english")
|
15 |
+
finalText=' '.join(a for a in word_tokenize(text) if (a not in list_stopwords and a.isalnum()))
|
16 |
+
return finalText
|
17 |
+
|
18 |
+
def removenumbers(text):
|
19 |
+
re_num = "\d+" ###COMPLETE THE REGULAR EXPRESSION
|
20 |
+
text = re.sub(re_num, "", text)
|
21 |
+
return text
|
22 |
+
|
23 |
+
def stem_text(text):
|
24 |
+
stemmer = SnowballStemmer("english")
|
25 |
+
t=' '.join(stemmer.stem(a) for a in word_tokenize(text))
|
26 |
+
return t
|
27 |
+
|
28 |
+
def preprocess(text):
|
29 |
+
text = normalize(text)
|
30 |
+
text = remove_stopwords(text)
|
31 |
+
text = removenumbers(text)
|
32 |
+
text = stem_text(text)
|
33 |
+
return(text)
|
data_integration.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
custom_headers = {
|
6 |
+
"Accept-language": "en-GB,en;q=0.9",
|
7 |
+
"Accept-Encoding": "gzip, deflate, br",
|
8 |
+
"Cache-Control": "max-age=0",
|
9 |
+
"Connection": "keep-alive",
|
10 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
|
11 |
+
}
|
12 |
+
|
13 |
+
def get_soup(url):
|
14 |
+
response = requests.get(url, headers=custom_headers)
|
15 |
+
|
16 |
+
if response.status_code != 200:
|
17 |
+
print("Error in getting webpage")
|
18 |
+
print(f"Error: {response.status_code} - {response.reason}")
|
19 |
+
exit(-1)
|
20 |
+
|
21 |
+
soup = BeautifulSoup(response.text, "lxml")
|
22 |
+
return soup
|
23 |
+
|
24 |
+
def get_reviews(soup):
|
25 |
+
review_elements = soup.select("div.review")
|
26 |
+
|
27 |
+
scraped_reviews = []
|
28 |
+
|
29 |
+
for review in review_elements:
|
30 |
+
r_author_element = review.select_one("span.a-profile-name")
|
31 |
+
r_author = r_author_element.text if r_author_element else None
|
32 |
+
|
33 |
+
r_rating_element = review.select_one("i.review-rating")
|
34 |
+
r_rating = r_rating_element.text.replace("out of 5 stars", "") if r_rating_element else None
|
35 |
+
|
36 |
+
r_title_element = review.select_one("a.review-title")
|
37 |
+
r_title_span_element = r_title_element.select_one("span:not([class])") if r_title_element else None
|
38 |
+
r_title = r_title_span_element.text if r_title_span_element else None
|
39 |
+
|
40 |
+
r_content_element = review.select_one("span.review-text")
|
41 |
+
r_content = r_content_element.text if r_content_element else None
|
42 |
+
|
43 |
+
r_date_element = review.select_one("span.review-date")
|
44 |
+
r_date = r_date_element.text if r_date_element else None
|
45 |
+
|
46 |
+
r_verified_element = review.select_one("span.a-size-mini")
|
47 |
+
r_verified = r_verified_element.text if r_verified_element else None
|
48 |
+
|
49 |
+
r_image_element = review.select_one("img.review-image-tile")
|
50 |
+
r_image = r_image_element.attrs["src"] if r_image_element else None
|
51 |
+
|
52 |
+
r = {
|
53 |
+
"author": r_author,
|
54 |
+
"rating": r_rating,
|
55 |
+
"title": r_title,
|
56 |
+
"content": r_content,
|
57 |
+
"date": r_date,
|
58 |
+
"verified": r_verified,
|
59 |
+
"image_url": r_image
|
60 |
+
}
|
61 |
+
|
62 |
+
scraped_reviews.append(r)
|
63 |
+
|
64 |
+
return scraped_reviews
|
65 |
+
|
66 |
+
def scrape_all_pages(url):
|
67 |
+
all_reviews = []
|
68 |
+
|
69 |
+
page_number = 1
|
70 |
+
while True:
|
71 |
+
soup = get_soup(f"{url}&pageNumber={page_number}")
|
72 |
+
reviews = get_reviews(soup)
|
73 |
+
|
74 |
+
if not reviews: # Break the loop if no reviews found on this page
|
75 |
+
break
|
76 |
+
|
77 |
+
all_reviews.extend(reviews)
|
78 |
+
page_number += 1
|
79 |
+
|
80 |
+
return all_reviews
|
81 |
+
|
82 |
+
# # Example usage:
|
83 |
+
# url = "https://www.amazon.in/OnePlus-Nord-Pastel-128GB-Storage/product-reviews/B0BY8JZ22K/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews"
|
84 |
+
# all_reviews = scrape_all_pages(url)
|
85 |
+
|
86 |
+
# # Convert to DataFrame for further analysis
|
87 |
+
# df = pd.DataFrame(all_reviews)
|
88 |
+
# df
|