Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,30 @@
|
|
1 |
import streamlit as st
|
2 |
import seaborn as sns
|
3 |
-
|
4 |
from transformers import pipeline
|
5 |
|
6 |
|
7 |
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
|
8 |
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
# for
|
13 |
-
|
14 |
-
|
15 |
-
# else:
|
16 |
-
# output = 'Negative'
|
17 |
-
# sentiments.append(output)
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import seaborn as sns
|
3 |
+
from data_cleaning import preprocess
|
4 |
from transformers import pipeline
|
5 |
|
6 |
|
7 |
sentiment_model = pipeline(model="ashok2216/gpt2-amazon-sentiment-classifier")
|
8 |
|
9 |
+
# Example usage:
|
10 |
+
sample_url = 'https://www.amazon.in/OnePlus-Nord-Pastel-128GB-Storage/product-reviews/B0BY8JZ22K/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews'
|
11 |
+
url = st.text_input("Amazon product link", sample_url)
|
12 |
+
st.write("The current movie title is", url)
|
13 |
|
14 |
+
all_reviews = scrape_all_pages(url)
|
15 |
+
# Convert to DataFrame for further analysis
|
16 |
+
reviews = pd.DataFrame(all_reviews)
|
17 |
+
processed_text = reviews[content]
|
|
|
|
|
|
|
18 |
|
19 |
+
# st.markdown(sentiment_model(['It is Super!']))
|
20 |
+
|
21 |
+
sentiments = []
|
22 |
+
for text in processed_text:
|
23 |
+
if list(sentiment_model(text)[0].values())[0] == 'LABEL_1':
|
24 |
+
output = 'Positive'
|
25 |
+
else:
|
26 |
+
output = 'Negative'
|
27 |
+
sentiments.append(output)
|
28 |
+
|
29 |
+
df['sentiments'] = sentiments
|
30 |
+
sns.countplot(df['sentiments'])
|