File size: 37,670 Bytes
0640d06 4da9684 3c26e3a 4da9684 41d8e7a 3c26e3a 4da9684 0640d06 41d8e7a 4da9684 41d8e7a 2859e8b 0640d06 2859e8b 41d8e7a ec3d192 2859e8b 3c26e3a 2859e8b ec3d192 2859e8b ec3d192 2859e8b 41d8e7a f217473 41d8e7a f217473 41d8e7a f217473 41d8e7a 4712765 6fa11b4 0640d06 6fa11b4 f217473 0640d06 f217473 0640d06 2c9aff2 0640d06 6fa11b4 f217473 2859e8b 0640d06 2859e8b 0640d06 2859e8b 3c26e3a 0640d06 3c26e3a 0640d06 3c26e3a 0640d06 3c26e3a 0640d06 2859e8b 0640d06 ec3d192 0640d06 ec3d192 0640d06 ec3d192 0640d06 2859e8b 0640d06 2859e8b 0640d06 c75b17c 0640d06 f217473 0640d06 3ca7e98 0640d06 2859e8b 0640d06 2859e8b 41d8e7a 4712765 e372257 6fa11b4 3ca7e98 c75b17c 3c26e3a f217473 ec3d192 2859e8b 92bae51 20edbc6 92bae51 20edbc6 92bae51 20edbc6 92bae51 20edbc6 92bae51 20edbc6 92bae51 20edbc6 92bae51 20edbc6 bc648b4 b722033 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
# %%writefile app.py
import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset, Dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import pandas as pd
import random
import warnings
from collections import OrderedDict
import flwr as fl
DEVICE = torch.device("cpu")
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
raw_datasets = load_dataset(dataset_name)
raw_datasets = raw_datasets.shuffle(seed=42)
del raw_datasets["unsupervised"]
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
train_datasets = []
test_datasets = []
for _ in range(num_clients):
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
train_datasets.append(train_dataset)
test_datasets.append(test_dataset)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
return train_datasets, test_datasets, data_collator
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-5)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
net.eval()
loss = 0
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
class CustomClient(fl.client.NumPyClient):
def __init__(self, net, trainloader, testloader, client_id):
self.net = net
self.trainloader = trainloader
self.testloader = testloader
self.client_id = client_id
self.losses = []
self.accuracies = []
def get_parameters(self, config):
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
def set_parameters(self, parameters):
params_dict = zip(self.net.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
self.net.load_state_dict(state_dict, strict=True)
def fit(self, parameters, config):
self.set_parameters(parameters)
train(self.net, self.trainloader, epochs=1)
loss, accuracy = test(self.net, self.testloader)
self.losses.append(loss)
self.accuracies.append(accuracy)
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
def evaluate(self, parameters, config):
self.set_parameters(parameters)
loss, accuracy = test(self.net, self.testloader)
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
def plot_metrics(self, round_num):
if self.losses and self.accuracies:
st.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
st.write(f"Loss: {self.losses[-1]:.4f}")
st.write(f"Accuracy: {self.accuracies[-1]:.4f}")
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
ax1.set_xlabel('Round')
ax1.set_ylabel('Loss', color='g')
ax2.set_ylabel('Accuracy', color='b')
plt.title(f'Client {self.client_id} Metrics')
st.pyplot(fig)
def main():
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
trainloaders = []
testloaders = []
clients = []
for i in range(NUM_CLIENTS):
st.write(f"### Client {i+1} Datasets")
train_df = pd.DataFrame(train_datasets[i])
test_df = pd.DataFrame(test_datasets[i])
st.write("#### Train Dataset")
edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
st.write("#### Test Dataset")
edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
edited_train_dataset = Dataset.from_pandas(edited_train_df)
edited_test_dataset = Dataset.from_pandas(edited_test_df)
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
trainloaders.append(trainloader)
testloaders.append(testloader)
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
client = CustomClient(net, trainloader, testloader, client_id=i+1)
clients.append(client)
if st.button("Start Training"):
def client_fn(cid):
return clients[int(cid)]
def weighted_average(metrics):
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
losses = [num_examples * m["loss"] for num_examples, m in metrics]
examples = [num_examples for num_examples, _ in metrics]
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
strategy = fl.server.strategy.FedAvg(
fraction_fit=1.0,
fraction_evaluate=1.0,
evaluate_metrics_aggregation_fn=weighted_average,
)
for round_num in range(NUM_ROUNDS):
st.write(f"### Round {round_num + 1}")
fl.simulation.start_simulation(
client_fn=client_fn,
num_clients=NUM_CLIENTS,
config=fl.server.ServerConfig(num_rounds=1),
strategy=strategy,
client_resources={"num_cpus": 1, "num_gpus": 0},
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
)
for client in clients:
client.plot_metrics(round_num + 1)
st.write(" ")
st.success(f"Training completed successfully!")
# Display final metrics
st.write("## Final Client Metrics")
for client in clients:
st.write(f"### Client {client.client_id}")
st.write(f"Final Loss: {client.losses[-1]:.4f}")
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
client.plot_metrics(NUM_ROUNDS)
st.write(" ")
else:
st.write("Click the 'Start Training' button to start the training process.")
if __name__ == "__main__":
main()
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader, client_id):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# self.client_id = client_id
# self.losses = []
# self.accuracies = []
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# loss, accuracy = test(self.net, self.testloader)
# self.losses.append(loss)
# self.accuracies.append(accuracy)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def plot_metrics(self):
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
# ax1.set_xlabel('Round')
# ax1.set_ylabel('Loss', color='g')
# ax2.set_ylabel('Accuracy', color='b')
# plt.title(f'Client {self.client_id} Metrics')
# st.pyplot(fig)
# def main():
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# clients = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
# clients.append(client)
# if st.button("Start Training"):
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# st.success(f"Training completed successfully!")
# for client in clients:
# st.write(f"### Client {client.client_id} Model Metrics")
# client.plot_metrics()
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
# 05/2024 # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# import warnings
# from collections import OrderedDict
# import flwr as fl
# DEVICE = torch.device("cpu")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
# def evaluate(self, parameters, config):
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
# def main():
# st.write("## Federated Learning with Flower and Dynamic Models and Datasets for Mobile Devices")
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset")
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset")
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# if st.button("Start Training"):
# round_losses = []
# round_accuracies = []
# clients = [CustomClient(net, trainloaders[i], testloaders[i]) for i in range(NUM_CLIENTS)]
# def client_fn(cid):
# return clients[int(cid)]
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": 0},
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
# )
# st.success(f"Training completed successfully!")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
##ORIGINAL###
# # %%writefile app.py
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import random
# DEVICE = torch.device("cpu")
# NUM_ROUNDS = 3
# def load_data(dataset_name):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# train_population = random.sample(range(len(raw_datasets["train"])), 20)
# test_population = random.sample(range(len(raw_datasets["test"])), 20)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
# tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
# return trainloader, testloader
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# loss = 0
# net.eval()
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader.dataset)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# from transformers import Wav2Vec2Processor, HubertForSequenceClassification
# import torch
# def main():
# st.write("## Federated Learning with dynamic models and datasets for mobile devices")
# dataset_name = st.selectbox("Dataset", ["imdb","audio_instruction_task", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# # processor = Wav2Vec2Processor.from_pretrained(model_name)
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# trainloader, testloader = load_data(dataset_name)
# if st.button("Start Training"):
# round_losses = []
# round_accuracies = [] # Store accuracy values for each round
# for round_num in range(1, NUM_ROUNDS + 1):
# st.write(f"## Round {round_num}")
# st.write("### Training Metrics for Each Client")
# for client in range(1, NUM_CLIENTS + 1):
# client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
# st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
# st.write("### Accuracy Over Rounds")
# round_accuracies.append(client_accuracy) # Append the accuracy for this round
# plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
# plt.xlabel("Round")
# plt.ylabel("Accuracy")
# plt.title("Accuracy Over Rounds")
# st.pyplot()
# st.write("### Loss Over Rounds")
# loss_value = random.random() # Placeholder for loss values
# round_losses.append(loss_value)
# rounds = list(range(1, round_num + 1))
# plt.plot(rounds, round_losses)
# plt.xlabel("Round")
# plt.ylabel("Loss")
# plt.title("Loss Over Rounds")
# st.pyplot()
# st.success(f"Round {round_num} completed successfully!")
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
###ORIGINAL##
# ########################TinyLLM####################################
# import torch
# import torch.nn as nn
# from torch.nn import functional as F
# # hyperparameters
# batch_size = 64 # how many independent sequences will we process in parallel?
# block_size = 256 # what is the maximum context length for predictions?
# max_iters = 5000
# eval_interval = 500
# learning_rate = 3e-4
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# eval_iters = 200
# n_embd = 384
# n_head = 6
# n_layer = 6
# dropout = 0.2
# # ------------
# torch.manual_seed(1337)
# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
# with open('input.txt', 'r', encoding='utf-8') as f:
# text = f.read()
# # here are all the unique characters that occur in this text
# chars = sorted(list(set(text)))
# vocab_size = len(chars)
# # create a mapping from characters to integers
# stoi = { ch:i for i,ch in enumerate(chars) }
# itos = { i:ch for i,ch in enumerate(chars) }
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# # Train and test splits
# data = torch.tensor(encode(text), dtype=torch.long)
# n = int(0.9*len(data)) # first 90% will be train, rest val
# train_data = data[:n]
# val_data = data[n:]
# # data loading
# def get_batch(split):
# # generate a small batch of data of inputs x and targets y
# data = train_data if split == 'train' else val_data
# ix = torch.randint(len(data) - block_size, (batch_size,))
# x = torch.stack([data[i:i+block_size] for i in ix])
# y = torch.stack([data[i+1:i+block_size+1] for i in ix])
# x, y = x.to(device), y.to(device)
# return x, y
# @torch.no_grad()
# def estimate_loss():
# out = {}
# model.eval()
# for split in ['train', 'val']:
# losses = torch.zeros(eval_iters)
# for k in range(eval_iters):
# X, Y = get_batch(split)
# logits, loss = model(X, Y)
# losses[k] = loss.item()
# out[split] = losses.mean()
# model.train()
# return out
# class Head(nn.Module):
# """ one head of self-attention """
# def __init__(self, head_size):
# super().__init__()
# self.key = nn.Linear(n_embd, head_size, bias=False)
# self.query = nn.Linear(n_embd, head_size, bias=False)
# self.value = nn.Linear(n_embd, head_size, bias=False)
# self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# # input of size (batch, time-step, channels)
# # output of size (batch, time-step, head size)
# B,T,C = x.shape
# k = self.key(x) # (B,T,hs)
# q = self.query(x) # (B,T,hs)
# # compute attention scores ("affinities")
# wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
# wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
# wei = F.softmax(wei, dim=-1) # (B, T, T)
# wei = self.dropout(wei)
# # perform the weighted aggregation of the values
# v = self.value(x) # (B,T,hs)
# out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
# return out
# class MultiHeadAttention(nn.Module):
# """ multiple heads of self-attention in parallel """
# def __init__(self, num_heads, head_size):
# super().__init__()
# self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
# self.proj = nn.Linear(head_size * num_heads, n_embd)
# self.dropout = nn.Dropout(dropout)
# def forward(self, x):
# out = torch.cat([h(x) for h in self.heads], dim=-1)
# out = self.dropout(self.proj(out))
# return out
# class FeedFoward(nn.Module):
# """ a simple linear layer followed by a non-linearity """
# def __init__(self, n_embd):
# super().__init__()
# self.net = nn.Sequential(
# nn.Linear(n_embd, 4 * n_embd),
# nn.ReLU(),
# nn.Linear(4 * n_embd, n_embd),
# nn.Dropout(dropout),
# )
# def forward(self, x):
# return self.net(x)
# class Block(nn.Module):
# """ Transformer block: communication followed by computation """
# def __init__(self, n_embd, n_head):
# # n_embd: embedding dimension, n_head: the number of heads we'd like
# super().__init__()
# head_size = n_embd // n_head
# self.sa = MultiHeadAttention(n_head, head_size)
# self.ffwd = FeedFoward(n_embd)
# self.ln1 = nn.LayerNorm(n_embd)
# self.ln2 = nn.LayerNorm(n_embd)
# def forward(self, x):
# x = x + self.sa(self.ln1(x))
# x = x + self.ffwd(self.ln2(x))
# return x
# class GPTLanguageModel(nn.Module):
# def __init__(self):
# super().__init__()
# # each token directly reads off the logits for the next token from a lookup table
# self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
# self.position_embedding_table = nn.Embedding(block_size, n_embd)
# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
# self.ln_f = nn.LayerNorm(n_embd) # final layer norm
# self.lm_head = nn.Linear(n_embd, vocab_size)
# # better init, not covered in the original GPT video, but important, will cover in followup video
# self.apply(self._init_weights)
# def _init_weights(self, module):
# if isinstance(module, nn.Linear):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# if module.bias is not None:
# torch.nn.init.zeros_(module.bias)
# elif isinstance(module, nn.Embedding):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# def forward(self, idx, targets=None):
# B, T = idx.shape
# # idx and targets are both (B,T) tensor of integers
# tok_emb = self.token_embedding_table(idx) # (B,T,C)
# pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
# x = tok_emb + pos_emb # (B,T,C)
# x = self.blocks(x) # (B,T,C)
# x = self.ln_f(x) # (B,T,C)
# logits = self.lm_head(x) # (B,T,vocab_size)
# if targets is None:
# loss = None
# else:
# B, T, C = logits.shape
# logits = logits.view(B*T, C)
# targets = targets.view(B*T)
# loss = F.cross_entropy(logits, targets)
# return logits, loss
# def generate(self, idx, max_new_tokens):
# # idx is (B, T) array of indices in the current context
# for _ in range(max_new_tokens):
# # crop idx to the last block_size tokens
# idx_cond = idx[:, -block_size:]
# # get the predictions
# logits, loss = self(idx_cond)
# # focus only on the last time step
# logits = logits[:, -1, :] # becomes (B, C)
# # apply softmax to get probabilities
# probs = F.softmax(logits, dim=-1) # (B, C)
# # sample from the distribution
# idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# # append sampled index to the running sequence
# idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
# return idx
# model = GPTLanguageModel()
# m = model.to(device)
# # print the number of parameters in the model
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
# # create a PyTorch optimizer
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# for iter in range(max_iters):
# # every once in a while evaluate the loss on train and val sets
# if iter % eval_interval == 0 or iter == max_iters - 1:
# losses = estimate_loss()
# print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# # sample a batch of data
# xb, yb = get_batch('train')
# # evaluate the loss
# logits, loss = model(xb, yb)
# optimizer.zero_grad(set_to_none=True)
# loss.backward()
# optimizer.step()
# # generate from the model
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
# ########################TinyLLM##################################
# def main():
# st.write("## Audio Classification with HuBERT")
# dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"])
# model_name = "facebook/hubert-base-ls960"
# processor = Wav2Vec2Processor.from_pretrained(model_name)
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# train_dataset, test_dataset = load_data(dataset_name)
# # Further implementation needed for actual data preparation and training loops
# st.write("Details of further steps would be filled in based on specific requirements and dataset structure.")
# if __name__ == "__main__":
# main()
# from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification
# import torch
# import soundfile as sf
# def load_audio(file_path):
# # Load an audio file, return waveform and sampling rate
# waveform, sample_rate = sf.read(file_path)
# return waveform, sample_rate
# def prepare_dataset(data_paths):
# # Dummy function to simulate loading and processing a dataset
# # Replace this with actual data loading and processing logic
# features = []
# labels = []
# for path, label in data_paths:
# waveform, sr = load_audio(path)
# input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values
# features.append(input_values)
# labels.append(label)
# return torch.cat(features, dim=0), torch.tensor(labels)
|