alisrbdni commited on
Commit
20edbc6
·
verified ·
1 Parent(s): 8162ae2

TinyLLM training added

Browse files
Files changed (1) hide show
  1. app.py +242 -0
app.py CHANGED
@@ -12,6 +12,248 @@ import random
12
  DEVICE = torch.device("cpu")
13
  NUM_ROUNDS = 3
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  def load_data(dataset_name):
16
  raw_datasets = load_dataset(dataset_name)
17
  raw_datasets = raw_datasets.shuffle(seed=42)
 
12
  DEVICE = torch.device("cpu")
13
  NUM_ROUNDS = 3
14
 
15
+
16
+
17
+ ########################TinyLLM####################################
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ from torch.nn import functional as F
22
+
23
+ # hyperparameters
24
+ batch_size = 64 # how many independent sequences will we process in parallel?
25
+ block_size = 256 # what is the maximum context length for predictions?
26
+ max_iters = 5000
27
+ eval_interval = 500
28
+ learning_rate = 3e-4
29
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
30
+ eval_iters = 200
31
+ n_embd = 384
32
+ n_head = 6
33
+ n_layer = 6
34
+ dropout = 0.2
35
+ # ------------
36
+
37
+ torch.manual_seed(1337)
38
+
39
+ # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
40
+ with open('input.txt', 'r', encoding='utf-8') as f:
41
+ text = f.read()
42
+
43
+ # here are all the unique characters that occur in this text
44
+ chars = sorted(list(set(text)))
45
+ vocab_size = len(chars)
46
+ # create a mapping from characters to integers
47
+ stoi = { ch:i for i,ch in enumerate(chars) }
48
+ itos = { i:ch for i,ch in enumerate(chars) }
49
+ encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
50
+ decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
51
+
52
+ # Train and test splits
53
+ data = torch.tensor(encode(text), dtype=torch.long)
54
+ n = int(0.9*len(data)) # first 90% will be train, rest val
55
+ train_data = data[:n]
56
+ val_data = data[n:]
57
+
58
+ # data loading
59
+ def get_batch(split):
60
+ # generate a small batch of data of inputs x and targets y
61
+ data = train_data if split == 'train' else val_data
62
+ ix = torch.randint(len(data) - block_size, (batch_size,))
63
+ x = torch.stack([data[i:i+block_size] for i in ix])
64
+ y = torch.stack([data[i+1:i+block_size+1] for i in ix])
65
+ x, y = x.to(device), y.to(device)
66
+ return x, y
67
+
68
+ @torch.no_grad()
69
+ def estimate_loss():
70
+ out = {}
71
+ model.eval()
72
+ for split in ['train', 'val']:
73
+ losses = torch.zeros(eval_iters)
74
+ for k in range(eval_iters):
75
+ X, Y = get_batch(split)
76
+ logits, loss = model(X, Y)
77
+ losses[k] = loss.item()
78
+ out[split] = losses.mean()
79
+ model.train()
80
+ return out
81
+
82
+ class Head(nn.Module):
83
+ """ one head of self-attention """
84
+
85
+ def __init__(self, head_size):
86
+ super().__init__()
87
+ self.key = nn.Linear(n_embd, head_size, bias=False)
88
+ self.query = nn.Linear(n_embd, head_size, bias=False)
89
+ self.value = nn.Linear(n_embd, head_size, bias=False)
90
+ self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
91
+
92
+ self.dropout = nn.Dropout(dropout)
93
+
94
+ def forward(self, x):
95
+ # input of size (batch, time-step, channels)
96
+ # output of size (batch, time-step, head size)
97
+ B,T,C = x.shape
98
+ k = self.key(x) # (B,T,hs)
99
+ q = self.query(x) # (B,T,hs)
100
+ # compute attention scores ("affinities")
101
+ wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
102
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
103
+ wei = F.softmax(wei, dim=-1) # (B, T, T)
104
+ wei = self.dropout(wei)
105
+ # perform the weighted aggregation of the values
106
+ v = self.value(x) # (B,T,hs)
107
+ out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
108
+ return out
109
+
110
+ class MultiHeadAttention(nn.Module):
111
+ """ multiple heads of self-attention in parallel """
112
+
113
+ def __init__(self, num_heads, head_size):
114
+ super().__init__()
115
+ self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
116
+ self.proj = nn.Linear(head_size * num_heads, n_embd)
117
+ self.dropout = nn.Dropout(dropout)
118
+
119
+ def forward(self, x):
120
+ out = torch.cat([h(x) for h in self.heads], dim=-1)
121
+ out = self.dropout(self.proj(out))
122
+ return out
123
+
124
+ class FeedFoward(nn.Module):
125
+ """ a simple linear layer followed by a non-linearity """
126
+
127
+ def __init__(self, n_embd):
128
+ super().__init__()
129
+ self.net = nn.Sequential(
130
+ nn.Linear(n_embd, 4 * n_embd),
131
+ nn.ReLU(),
132
+ nn.Linear(4 * n_embd, n_embd),
133
+ nn.Dropout(dropout),
134
+ )
135
+
136
+ def forward(self, x):
137
+ return self.net(x)
138
+
139
+ class Block(nn.Module):
140
+ """ Transformer block: communication followed by computation """
141
+
142
+ def __init__(self, n_embd, n_head):
143
+ # n_embd: embedding dimension, n_head: the number of heads we'd like
144
+ super().__init__()
145
+ head_size = n_embd // n_head
146
+ self.sa = MultiHeadAttention(n_head, head_size)
147
+ self.ffwd = FeedFoward(n_embd)
148
+ self.ln1 = nn.LayerNorm(n_embd)
149
+ self.ln2 = nn.LayerNorm(n_embd)
150
+
151
+ def forward(self, x):
152
+ x = x + self.sa(self.ln1(x))
153
+ x = x + self.ffwd(self.ln2(x))
154
+ return x
155
+
156
+ class GPTLanguageModel(nn.Module):
157
+
158
+ def __init__(self):
159
+ super().__init__()
160
+ # each token directly reads off the logits for the next token from a lookup table
161
+ self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
162
+ self.position_embedding_table = nn.Embedding(block_size, n_embd)
163
+ self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
164
+ self.ln_f = nn.LayerNorm(n_embd) # final layer norm
165
+ self.lm_head = nn.Linear(n_embd, vocab_size)
166
+
167
+ # better init, not covered in the original GPT video, but important, will cover in followup video
168
+ self.apply(self._init_weights)
169
+
170
+ def _init_weights(self, module):
171
+ if isinstance(module, nn.Linear):
172
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
173
+ if module.bias is not None:
174
+ torch.nn.init.zeros_(module.bias)
175
+ elif isinstance(module, nn.Embedding):
176
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
177
+
178
+ def forward(self, idx, targets=None):
179
+ B, T = idx.shape
180
+
181
+ # idx and targets are both (B,T) tensor of integers
182
+ tok_emb = self.token_embedding_table(idx) # (B,T,C)
183
+ pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
184
+ x = tok_emb + pos_emb # (B,T,C)
185
+ x = self.blocks(x) # (B,T,C)
186
+ x = self.ln_f(x) # (B,T,C)
187
+ logits = self.lm_head(x) # (B,T,vocab_size)
188
+
189
+ if targets is None:
190
+ loss = None
191
+ else:
192
+ B, T, C = logits.shape
193
+ logits = logits.view(B*T, C)
194
+ targets = targets.view(B*T)
195
+ loss = F.cross_entropy(logits, targets)
196
+
197
+ return logits, loss
198
+
199
+ def generate(self, idx, max_new_tokens):
200
+ # idx is (B, T) array of indices in the current context
201
+ for _ in range(max_new_tokens):
202
+ # crop idx to the last block_size tokens
203
+ idx_cond = idx[:, -block_size:]
204
+ # get the predictions
205
+ logits, loss = self(idx_cond)
206
+ # focus only on the last time step
207
+ logits = logits[:, -1, :] # becomes (B, C)
208
+ # apply softmax to get probabilities
209
+ probs = F.softmax(logits, dim=-1) # (B, C)
210
+ # sample from the distribution
211
+ idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
212
+ # append sampled index to the running sequence
213
+ idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
214
+ return idx
215
+
216
+ model = GPTLanguageModel()
217
+ m = model.to(device)
218
+ # print the number of parameters in the model
219
+ print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
220
+
221
+ # create a PyTorch optimizer
222
+ optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
223
+
224
+ for iter in range(max_iters):
225
+
226
+ # every once in a while evaluate the loss on train and val sets
227
+ if iter % eval_interval == 0 or iter == max_iters - 1:
228
+ losses = estimate_loss()
229
+ print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
230
+
231
+ # sample a batch of data
232
+ xb, yb = get_batch('train')
233
+
234
+ # evaluate the loss
235
+ logits, loss = model(xb, yb)
236
+ optimizer.zero_grad(set_to_none=True)
237
+ loss.backward()
238
+ optimizer.step()
239
+
240
+ # generate from the model
241
+ context = torch.zeros((1, 1), dtype=torch.long, device=device)
242
+ print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
243
+ #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+ ########################TinyLLM##################################
256
+
257
  def load_data(dataset_name):
258
  raw_datasets = load_dataset(dataset_name)
259
  raw_datasets = raw_datasets.shuffle(seed=42)