Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# %%writefile app.py
|
2 |
-
|
3 |
import streamlit as st
|
4 |
import matplotlib.pyplot as plt
|
5 |
import torch
|
@@ -9,8 +7,6 @@ from evaluate import load as load_metric
|
|
9 |
from torch.utils.data import DataLoader
|
10 |
import pandas as pd
|
11 |
import random
|
12 |
-
import warnings
|
13 |
-
from collections import OrderedDict
|
14 |
import flwr as fl
|
15 |
|
16 |
DEVICE = torch.device("cpu")
|
@@ -21,7 +17,6 @@ def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
|
21 |
del raw_datasets["unsupervised"]
|
22 |
|
23 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
24 |
-
|
25 |
def tokenize_function(examples):
|
26 |
return tokenizer(examples["text"], truncation=True)
|
27 |
|
@@ -102,109 +97,273 @@ class CustomClient(fl.client.NumPyClient):
|
|
102 |
|
103 |
def plot_metrics(self, round_num):
|
104 |
if self.losses and self.accuracies:
|
105 |
-
st.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
106 |
-
st.write(f"Loss: {self.losses[-1]:.4f}")
|
107 |
-
st.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
108 |
-
|
109 |
fig, ax1 = plt.subplots()
|
110 |
|
111 |
-
|
112 |
-
ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
|
113 |
-
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
|
114 |
-
|
115 |
ax1.set_xlabel('Round')
|
116 |
-
ax1.set_ylabel('Loss', color=
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
st.pyplot(fig)
|
|
|
121 |
|
122 |
def main():
|
123 |
-
st.
|
124 |
-
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
125 |
-
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
126 |
|
127 |
-
NUM_CLIENTS = st.slider("Number of Clients",
|
128 |
-
NUM_ROUNDS = st.slider("Number of Rounds",
|
129 |
|
130 |
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
|
136 |
-
|
137 |
-
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
st.write("#### Test Dataset")
|
145 |
-
edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
|
146 |
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
testloaders.append(testloader)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
clients.append(client)
|
159 |
|
160 |
-
if st.button("Start Training"):
|
161 |
-
def client_fn(cid):
|
162 |
-
return clients[int(cid)]
|
163 |
|
164 |
-
def weighted_average(metrics):
|
165 |
-
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
166 |
-
losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
167 |
-
examples = [num_examples for num_examples, _ in metrics]
|
168 |
-
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
169 |
|
170 |
-
|
171 |
-
fraction_fit=1.0,
|
172 |
-
fraction_evaluate=1.0,
|
173 |
-
evaluate_metrics_aggregation_fn=weighted_average,
|
174 |
-
)
|
175 |
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
client_fn=client_fn,
|
181 |
-
num_clients=NUM_CLIENTS,
|
182 |
-
config=fl.server.ServerConfig(num_rounds=1),
|
183 |
-
strategy=strategy,
|
184 |
-
client_resources={"num_cpus": 1, "num_gpus": 0},
|
185 |
-
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
186 |
-
)
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
191 |
|
192 |
-
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
for client in clients:
|
197 |
-
st.write(f"### Client {client.client_id}")
|
198 |
-
st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
199 |
-
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
200 |
-
client.plot_metrics(NUM_ROUNDS)
|
201 |
-
st.write(" ")
|
202 |
|
203 |
-
|
204 |
-
|
|
|
205 |
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
|
210 |
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import matplotlib.pyplot as plt
|
3 |
import torch
|
|
|
7 |
from torch.utils.data import DataLoader
|
8 |
import pandas as pd
|
9 |
import random
|
|
|
|
|
10 |
import flwr as fl
|
11 |
|
12 |
DEVICE = torch.device("cpu")
|
|
|
17 |
del raw_datasets["unsupervised"]
|
18 |
|
19 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
|
20 |
def tokenize_function(examples):
|
21 |
return tokenizer(examples["text"], truncation=True)
|
22 |
|
|
|
97 |
|
98 |
def plot_metrics(self, round_num):
|
99 |
if self.losses and self.accuracies:
|
|
|
|
|
|
|
|
|
100 |
fig, ax1 = plt.subplots()
|
101 |
|
102 |
+
color = 'tab:red'
|
|
|
|
|
|
|
103 |
ax1.set_xlabel('Round')
|
104 |
+
ax1.set_ylabel('Loss', color=color)
|
105 |
+
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
|
106 |
+
ax1.tick_params(axis='y', labelcolor=color)
|
107 |
+
|
108 |
+
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
|
109 |
+
color = 'tab:blue'
|
110 |
+
ax2.set_ylabel('Accuracy', color=color) # we already handled the x-label with ax1
|
111 |
+
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
|
112 |
+
ax2.tick_params(axis='y', labelcolor=color)
|
113 |
|
114 |
+
fig.tight_layout() # otherwise the right y-label is slightly clipped
|
115 |
st.pyplot(fig)
|
116 |
+
st.write(f"Round {round_num} - Loss: {self.losses[-1]:.4f}, Accuracy: {self.accuracies[-1]:.4f}")
|
117 |
|
118 |
def main():
|
119 |
+
st.title("Federated Learning with Dynamic Models and Datasets")
|
120 |
+
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"], index=0)
|
121 |
+
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"], index=0)
|
122 |
|
123 |
+
NUM_CLIENTS = st.slider("Number of Clients", 1, 10, 3)
|
124 |
+
NUM_ROUNDS = st.slider("Number of Rounds", 1, 10, 5)
|
125 |
|
126 |
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
127 |
|
128 |
+
if st.button("Initialize Clients"):
|
129 |
+
trainloaders = []
|
130 |
+
testloaders = []
|
131 |
+
clients = []
|
132 |
|
133 |
+
for i in range(NUM_CLIENTS):
|
134 |
+
train_df = pd.DataFrame(train_datasets[i])
|
135 |
+
test_df = pd.DataFrame(test_datasets[i])
|
136 |
|
137 |
+
edited_train_dataset = Dataset.from_pandas(train_df)
|
138 |
+
edited_test_dataset = Dataset.from_pandas(test_df)
|
139 |
|
140 |
+
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=4, collate_fn=data_collator)
|
141 |
+
testloader = DataLoader(edited_test_dataset, batch_size=4, collate_fn=data_collator)
|
|
|
|
|
142 |
|
143 |
+
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
144 |
+
client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
145 |
+
clients.append(client)
|
146 |
|
147 |
+
for round_num in range(1, NUM_ROUNDS + 1):
|
148 |
+
st.write(f"### Round {round_num}")
|
149 |
+
for client in clients:
|
150 |
+
_, _, _ = client.fit({}, {})
|
151 |
+
client.plot_metrics(round_num)
|
152 |
|
153 |
+
st.success("Training completed successfully!")
|
|
|
154 |
|
155 |
+
if __name__ == "__main__":
|
156 |
+
main()
|
|
|
157 |
|
|
|
|
|
|
|
158 |
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
# # %%writefile app.py
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
# import streamlit as st
|
163 |
+
# import matplotlib.pyplot as plt
|
164 |
+
# import torch
|
165 |
+
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
166 |
+
# from datasets import load_dataset, Dataset
|
167 |
+
# from evaluate import load as load_metric
|
168 |
+
# from torch.utils.data import DataLoader
|
169 |
+
# import pandas as pd
|
170 |
+
# import random
|
171 |
+
# import warnings
|
172 |
+
# from collections import OrderedDict
|
173 |
+
# import flwr as fl
|
174 |
|
175 |
+
# DEVICE = torch.device("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
178 |
+
# raw_datasets = load_dataset(dataset_name)
|
179 |
+
# raw_datasets = raw_datasets.shuffle(seed=42)
|
180 |
+
# del raw_datasets["unsupervised"]
|
181 |
|
182 |
+
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
183 |
|
184 |
+
# def tokenize_function(examples):
|
185 |
+
# return tokenizer(examples["text"], truncation=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
188 |
+
# tokenized_datasets = tokenized_datasets.remove_columns("text")
|
189 |
+
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
190 |
|
191 |
+
# train_datasets = []
|
192 |
+
# test_datasets = []
|
193 |
+
|
194 |
+
# for _ in range(num_clients):
|
195 |
+
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
196 |
+
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
197 |
+
# train_datasets.append(train_dataset)
|
198 |
+
# test_datasets.append(test_dataset)
|
199 |
+
|
200 |
+
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
201 |
+
|
202 |
+
# return train_datasets, test_datasets, data_collator
|
203 |
+
|
204 |
+
# def train(net, trainloader, epochs):
|
205 |
+
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
206 |
+
# net.train()
|
207 |
+
# for _ in range(epochs):
|
208 |
+
# for batch in trainloader:
|
209 |
+
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
210 |
+
# outputs = net(**batch)
|
211 |
+
# loss = outputs.loss
|
212 |
+
# loss.backward()
|
213 |
+
# optimizer.step()
|
214 |
+
# optimizer.zero_grad()
|
215 |
+
|
216 |
+
# def test(net, testloader):
|
217 |
+
# metric = load_metric("accuracy")
|
218 |
+
# net.eval()
|
219 |
+
# loss = 0
|
220 |
+
# for batch in testloader:
|
221 |
+
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
222 |
+
# with torch.no_grad():
|
223 |
+
# outputs = net(**batch)
|
224 |
+
# logits = outputs.logits
|
225 |
+
# loss += outputs.loss.item()
|
226 |
+
# predictions = torch.argmax(logits, dim=-1)
|
227 |
+
# metric.add_batch(predictions=predictions, references=batch["labels"])
|
228 |
+
# loss /= len(testloader)
|
229 |
+
# accuracy = metric.compute()["accuracy"]
|
230 |
+
# return loss, accuracy
|
231 |
+
|
232 |
+
# class CustomClient(fl.client.NumPyClient):
|
233 |
+
# def __init__(self, net, trainloader, testloader, client_id):
|
234 |
+
# self.net = net
|
235 |
+
# self.trainloader = trainloader
|
236 |
+
# self.testloader = testloader
|
237 |
+
# self.client_id = client_id
|
238 |
+
# self.losses = []
|
239 |
+
# self.accuracies = []
|
240 |
+
|
241 |
+
# def get_parameters(self, config):
|
242 |
+
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
243 |
+
|
244 |
+
# def set_parameters(self, parameters):
|
245 |
+
# params_dict = zip(self.net.state_dict().keys(), parameters)
|
246 |
+
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
247 |
+
# self.net.load_state_dict(state_dict, strict=True)
|
248 |
+
|
249 |
+
# def fit(self, parameters, config):
|
250 |
+
# self.set_parameters(parameters)
|
251 |
+
# train(self.net, self.trainloader, epochs=1)
|
252 |
+
# loss, accuracy = test(self.net, self.testloader)
|
253 |
+
# self.losses.append(loss)
|
254 |
+
# self.accuracies.append(accuracy)
|
255 |
+
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
256 |
+
|
257 |
+
# def evaluate(self, parameters, config):
|
258 |
+
# self.set_parameters(parameters)
|
259 |
+
# loss, accuracy = test(self.net, self.testloader)
|
260 |
+
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
261 |
+
|
262 |
+
# def plot_metrics(self, round_num):
|
263 |
+
# if self.losses and self.accuracies:
|
264 |
+
# st.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
265 |
+
# st.write(f"Loss: {self.losses[-1]:.4f}")
|
266 |
+
# st.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
267 |
+
|
268 |
+
# fig, ax1 = plt.subplots()
|
269 |
+
|
270 |
+
# ax2 = ax1.twinx()
|
271 |
+
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
|
272 |
+
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
|
273 |
+
|
274 |
+
# ax1.set_xlabel('Round')
|
275 |
+
# ax1.set_ylabel('Loss', color='g')
|
276 |
+
# ax2.set_ylabel('Accuracy', color='b')
|
277 |
+
|
278 |
+
# plt.title(f'Client {self.client_id} Metrics')
|
279 |
+
# st.pyplot(fig)
|
280 |
+
|
281 |
+
# def main():
|
282 |
+
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
283 |
+
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
284 |
+
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
285 |
+
|
286 |
+
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
287 |
+
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
288 |
+
|
289 |
+
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
290 |
+
|
291 |
+
# trainloaders = []
|
292 |
+
# testloaders = []
|
293 |
+
# clients = []
|
294 |
+
|
295 |
+
# for i in range(NUM_CLIENTS):
|
296 |
+
# st.write(f"### Client {i+1} Datasets")
|
297 |
+
|
298 |
+
# train_df = pd.DataFrame(train_datasets[i])
|
299 |
+
# test_df = pd.DataFrame(test_datasets[i])
|
300 |
+
|
301 |
+
# st.write("#### Train Dataset")
|
302 |
+
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
|
303 |
+
# st.write("#### Test Dataset")
|
304 |
+
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
|
305 |
+
|
306 |
+
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
307 |
+
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
308 |
+
|
309 |
+
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
310 |
+
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
311 |
+
|
312 |
+
# trainloaders.append(trainloader)
|
313 |
+
# testloaders.append(testloader)
|
314 |
+
|
315 |
+
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
316 |
+
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
317 |
+
# clients.append(client)
|
318 |
+
|
319 |
+
# if st.button("Start Training"):
|
320 |
+
# def client_fn(cid):
|
321 |
+
# return clients[int(cid)]
|
322 |
+
|
323 |
+
# def weighted_average(metrics):
|
324 |
+
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
325 |
+
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
326 |
+
# examples = [num_examples for num_examples, _ in metrics]
|
327 |
+
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
328 |
+
|
329 |
+
# strategy = fl.server.strategy.FedAvg(
|
330 |
+
# fraction_fit=1.0,
|
331 |
+
# fraction_evaluate=1.0,
|
332 |
+
# evaluate_metrics_aggregation_fn=weighted_average,
|
333 |
+
# )
|
334 |
+
|
335 |
+
# for round_num in range(NUM_ROUNDS):
|
336 |
+
# st.write(f"### Round {round_num + 1}")
|
337 |
+
|
338 |
+
# fl.simulation.start_simulation(
|
339 |
+
# client_fn=client_fn,
|
340 |
+
# num_clients=NUM_CLIENTS,
|
341 |
+
# config=fl.server.ServerConfig(num_rounds=1),
|
342 |
+
# strategy=strategy,
|
343 |
+
# client_resources={"num_cpus": 1, "num_gpus": 0},
|
344 |
+
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
345 |
+
# )
|
346 |
+
|
347 |
+
# for client in clients:
|
348 |
+
# client.plot_metrics(round_num + 1)
|
349 |
+
# st.write(" ")
|
350 |
+
|
351 |
+
# st.success(f"Training completed successfully!")
|
352 |
+
|
353 |
+
# # Display final metrics
|
354 |
+
# st.write("## Final Client Metrics")
|
355 |
+
# for client in clients:
|
356 |
+
# st.write(f"### Client {client.client_id}")
|
357 |
+
# st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
358 |
+
# st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
359 |
+
# client.plot_metrics(NUM_ROUNDS)
|
360 |
+
# st.write(" ")
|
361 |
+
|
362 |
+
# else:
|
363 |
+
# st.write("Click the 'Start Training' button to start the training process.")
|
364 |
+
|
365 |
+
# if __name__ == "__main__":
|
366 |
+
# main()
|
367 |
|
368 |
|
369 |
|