Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
# %%writefile app.py
|
|
|
2 |
|
3 |
import streamlit as st
|
4 |
import matplotlib.pyplot as plt
|
@@ -6,12 +7,15 @@ import torch
|
|
6 |
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
7 |
from datasets import load_dataset
|
8 |
from evaluate import load as load_metric
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
import random
|
|
|
|
|
|
|
11 |
|
12 |
DEVICE = torch.device("cpu")
|
13 |
|
14 |
-
def load_data(dataset_name, train_size=20, test_size=20):
|
15 |
raw_datasets = load_dataset(dataset_name)
|
16 |
raw_datasets = raw_datasets.shuffle(seed=42)
|
17 |
del raw_datasets["unsupervised"]
|
@@ -25,14 +29,21 @@ def load_data(dataset_name, train_size=20, test_size=20):
|
|
25 |
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
26 |
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
32 |
-
trainloader = DataLoader(train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
33 |
-
testloader = DataLoader(test_dataset, batch_size=32, collate_fn=data_collator)
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
def train(net, trainloader, epochs):
|
38 |
optimizer = AdamW(net.parameters(), lr=5e-5)
|
@@ -62,6 +73,30 @@ def test(net, testloader):
|
|
62 |
accuracy = metric.compute()["accuracy"]
|
63 |
return loss, accuracy
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def main():
|
66 |
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
67 |
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
@@ -72,52 +107,39 @@ def main():
|
|
72 |
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
73 |
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
74 |
|
75 |
-
|
76 |
|
77 |
if st.button("Start Training"):
|
78 |
round_losses = []
|
79 |
round_accuracies = []
|
80 |
|
81 |
-
for
|
82 |
-
st.write(f"## Round {round_num}")
|
83 |
-
|
84 |
-
st.write("### Training Metrics for Each Client")
|
85 |
-
client_losses = []
|
86 |
-
client_accuracies = []
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
trainloader_client = DataLoader(train_subset, shuffle=True, batch_size=32, collate_fn=trainloader.collate_fn)
|
91 |
-
train(net, trainloader_client, epochs=1)
|
92 |
-
client_loss, client_accuracy = test(net, testloader)
|
93 |
-
st.write(f"Client {client}: Loss: {client_loss:.4f}, Accuracy: {client_accuracy:.4f}")
|
94 |
-
client_losses.append(client_loss)
|
95 |
-
client_accuracies.append(client_accuracy)
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
plt.plot(range(1, round_num + 1), round_accuracies, marker='o', label="Accuracy")
|
108 |
-
plt.xlabel("Round")
|
109 |
-
plt.ylabel("Accuracy")
|
110 |
-
plt.title("Accuracy Over Rounds")
|
111 |
-
st.pyplot()
|
112 |
-
|
113 |
-
st.write("### Loss Over Rounds")
|
114 |
-
plt.plot(range(1, round_num + 1), round_losses, marker='o', color='red', label="Loss")
|
115 |
-
plt.xlabel("Round")
|
116 |
-
plt.ylabel("Loss")
|
117 |
-
plt.title("Loss Over Rounds")
|
118 |
-
st.pyplot()
|
119 |
-
|
120 |
-
st.success(f"Round {round_num} completed successfully!")
|
121 |
|
122 |
else:
|
123 |
st.write("Click the 'Start Training' button to start the training process.")
|
@@ -125,6 +147,7 @@ def main():
|
|
125 |
if __name__ == "__main__":
|
126 |
main()
|
127 |
|
|
|
128 |
##ORIGINAL###
|
129 |
|
130 |
|
|
|
1 |
# %%writefile app.py
|
2 |
+
# %%writefile app.py
|
3 |
|
4 |
import streamlit as st
|
5 |
import matplotlib.pyplot as plt
|
|
|
7 |
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
8 |
from datasets import load_dataset
|
9 |
from evaluate import load as load_metric
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
import random
|
12 |
+
import warnings
|
13 |
+
from collections import OrderedDict
|
14 |
+
import flwr as fl
|
15 |
|
16 |
DEVICE = torch.device("cpu")
|
17 |
|
18 |
+
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
19 |
raw_datasets = load_dataset(dataset_name)
|
20 |
raw_datasets = raw_datasets.shuffle(seed=42)
|
21 |
del raw_datasets["unsupervised"]
|
|
|
29 |
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
30 |
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
31 |
|
32 |
+
train_datasets = []
|
33 |
+
test_datasets = []
|
34 |
+
|
35 |
+
for _ in range(num_clients):
|
36 |
+
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
37 |
+
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
38 |
+
train_datasets.append(train_dataset)
|
39 |
+
test_datasets.append(test_dataset)
|
40 |
|
41 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
|
|
|
42 |
|
43 |
+
trainloaders = [DataLoader(ds, shuffle=True, batch_size=32, collate_fn=data_collator) for ds in train_datasets]
|
44 |
+
testloaders = [DataLoader(ds, batch_size=32, collate_fn=data_collator) for ds in test_datasets]
|
45 |
+
|
46 |
+
return trainloaders, testloaders
|
47 |
|
48 |
def train(net, trainloader, epochs):
|
49 |
optimizer = AdamW(net.parameters(), lr=5e-5)
|
|
|
73 |
accuracy = metric.compute()["accuracy"]
|
74 |
return loss, accuracy
|
75 |
|
76 |
+
class CustomClient(fl.client.NumPyClient):
|
77 |
+
def __init__(self, net, trainloader, testloader):
|
78 |
+
self.net = net
|
79 |
+
self.trainloader = trainloader
|
80 |
+
self.testloader = testloader
|
81 |
+
|
82 |
+
def get_parameters(self, config):
|
83 |
+
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
84 |
+
|
85 |
+
def set_parameters(self, parameters):
|
86 |
+
params_dict = zip(self.net.state_dict().keys(), parameters)
|
87 |
+
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
88 |
+
self.net.load_state_dict(state_dict, strict=True)
|
89 |
+
|
90 |
+
def fit(self, parameters, config):
|
91 |
+
self.set_parameters(parameters)
|
92 |
+
train(self.net, self.trainloader, epochs=1)
|
93 |
+
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
94 |
+
|
95 |
+
def evaluate(self, parameters, config):
|
96 |
+
self.set_parameters(parameters)
|
97 |
+
loss, accuracy = test(self.net, self.testloader)
|
98 |
+
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
99 |
+
|
100 |
def main():
|
101 |
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
102 |
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
|
|
107 |
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
108 |
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
109 |
|
110 |
+
trainloaders, testloaders = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
111 |
|
112 |
if st.button("Start Training"):
|
113 |
round_losses = []
|
114 |
round_accuracies = []
|
115 |
|
116 |
+
clients = [CustomClient(net, trainloaders[i], testloaders[i]) for i in range(NUM_CLIENTS)]
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
def client_fn(cid):
|
119 |
+
return clients[int(cid)]
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
def weighted_average(metrics):
|
122 |
+
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
123 |
+
losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
124 |
+
examples = [num_examples for num_examples, _ in metrics]
|
125 |
+
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
126 |
|
127 |
+
strategy = fl.server.strategy.FedAvg(
|
128 |
+
fraction_fit=1.0,
|
129 |
+
fraction_evaluate=1.0,
|
130 |
+
evaluate_metrics_aggregation_fn=weighted_average,
|
131 |
+
)
|
132 |
|
133 |
+
fl.simulation.start_simulation(
|
134 |
+
client_fn=client_fn,
|
135 |
+
num_clients=NUM_CLIENTS,
|
136 |
+
config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
|
137 |
+
strategy=strategy,
|
138 |
+
client_resources={"num_cpus": 1, "num_gpus": 0},
|
139 |
+
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
140 |
+
)
|
141 |
|
142 |
+
st.success(f"Training completed successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
else:
|
145 |
st.write("Click the 'Start Training' button to start the training process.")
|
|
|
147 |
if __name__ == "__main__":
|
148 |
main()
|
149 |
|
150 |
+
|
151 |
##ORIGINAL###
|
152 |
|
153 |
|