File size: 5,960 Bytes
706fc89
 
 
 
 
 
 
 
 
 
7ddff49
c536f05
9943898
 
 
 
 
 
 
 
 
706fc89
 
c536f05
 
 
 
 
 
 
 
 
 
 
 
 
706fc89
 
 
7ddff49
706fc89
 
9943898
706fc89
9943898
 
 
 
 
 
706fc89
c536f05
706fc89
9943898
 
 
 
 
 
706fc89
7ddff49
 
 
706fc89
7ddff49
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddff49
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c536f05
7ddff49
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddff49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import streamlit as st
import re
from langdetect import detect
from transformers import pipeline
import nltk
from docx import Document
import io

# Download required NLTK resources
nltk.download('punkt')

# Load AI models once to optimize performance
try:
    tone_model = pipeline("zero-shot-classification", model="cross-encoder/nli-deberta-v3-large")
except OSError:
    st.error("Failed to load tone analysis model. Please check internet connection or model availability.")

try:
    frame_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
except OSError:
    st.error("Failed to load frame classification model. Please check internet connection or model availability.")

# Updated tone categories
tone_categories = [
    "Emotional & Urgent", "Harsh & Critical", "Negative & Somber",
    "Empowering & Motivational", "Neutral & Informative", "Hopeful & Positive"
]

# Updated frame categories
frame_categories = [
    "Human Rights & Justice", "Political & State Accountability", "Gender & Patriarchy",
    "Religious Freedom & Persecution", "Grassroots Mobilization", "Environmental Crisis & Activism",
    "Anti-Extremism & Anti-Violence", "Social Inequality & Economic Disparities"
]

# Detect language
def detect_language(text):
    try:
        return detect(text)
    except Exception:
        return "unknown"

# Analyze tone using DeBERTa model
def analyze_tone(text):
    try:
        model_result = tone_model(text, candidate_labels=tone_categories)
        return model_result["labels"][:2]  # Top 2 tone labels
    except Exception as e:
        st.error(f"Error analyzing tone: {e}")
        return ["Unknown"]

# Extract frames using BART model
def extract_frames(text):
    try:
        model_result = frame_model(text, candidate_labels=frame_categories)
        return model_result["labels"][:2]  # Top 2 frame labels
    except Exception as e:
        st.error(f"Error extracting frames: {e}")
        return ["Unknown"]

# Extract hashtags
def extract_hashtags(text):
    return re.findall(r"#\w+", text)

# Extract captions from DOCX file
def extract_captions_from_docx(docx_file):
    doc = Document(docx_file)
    captions = {}
    current_post = None
    for para in doc.paragraphs:
        text = para.text.strip()
        if re.match(r"Post \d+", text, re.IGNORECASE):
            current_post = text
            captions[current_post] = []
        elif current_post:
            captions[current_post].append(text)

    return {post: " ".join(lines) for post, lines in captions.items() if lines}

# Generate a DOCX file in-memory
def generate_docx(output_data):
    doc = Document()
    doc.add_heading('Activism Message Analysis', 0)

    for index, (caption, result) in enumerate(output_data.items(), start=1):
        doc.add_heading(f"{index}. {caption}", level=1)
        doc.add_paragraph("Full Caption:")
        doc.add_paragraph(result['Full Caption'], style="Quote")

        doc.add_paragraph(f"Language: {result['Language']}")
        doc.add_paragraph(f"Tone of Caption: {', '.join(result['Tone of Caption'])}")
        doc.add_paragraph(f"Number of Hashtags: {result['Hashtag Count']}")
        doc.add_paragraph(f"Hashtags Found: {', '.join(result['Hashtags'])}")

        doc.add_heading('Frames:', level=2)
        for frame in result['Frames']:
            doc.add_paragraph(frame)

    doc_io = io.BytesIO()
    doc.save(doc_io)
    doc_io.seek(0)

    return doc_io

# Streamlit app UI
st.title('AI-Powered Activism Message Analyzer')

st.write("Enter the text to analyze or upload a DOCX file containing captions:")

# Text Input
input_text = st.text_area("Input Text", height=200)

# File Upload
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])

# Initialize output dictionary
output_data = {}

if input_text:
    language = detect_language(input_text)
    tone = analyze_tone(input_text)
    hashtags = extract_hashtags(input_text)
    frames = extract_frames(input_text)

    output_data["Manual Input"] = {
        'Full Caption': input_text,
        'Language': language,
        'Tone of Caption': tone,
        'Hashtags': hashtags,
        'Hashtag Count': len(hashtags),
        'Frames': frames
    }

    st.success("Analysis completed for text input.")

if uploaded_file:
    captions = extract_captions_from_docx(uploaded_file)
    for caption, text in captions.items():
        language = detect_language(text)
        tone = analyze_tone(text)
        hashtags = extract_hashtags(text)
        frames = extract_frames(text)

        output_data[caption] = {
            'Full Caption': text,
            'Language': language,
            'Tone of Caption': tone,
            'Hashtags': hashtags,
            'Hashtag Count': len(hashtags),
            'Frames': frames
        }

    st.success(f"Analysis completed for {len(captions)} posts from the DOCX file.")

# Display results
if output_data:
    with st.expander("Generated Output"):
        st.subheader("Analysis Results")
        for index, (caption, result) in enumerate(output_data.items(), start=1):
            st.write(f"### {index}. {caption}")
            st.write("**Full Caption:**")
            st.write(f"> {result['Full Caption']}")
            st.write(f"**Language**: {result['Language']}")
            st.write(f"**Tone of Caption**: {', '.join(result['Tone of Caption'])}")
            st.write(f"**Number of Hashtags**: {result['Hashtag Count']}")
            st.write(f"**Hashtags Found:** {', '.join(result['Hashtags'])}")
            st.write("**Frames**:")
            for frame in result['Frames']:
                st.write(f"- {frame}")

    docx_file = generate_docx(output_data)

    if docx_file:
        st.download_button(
            label="Download Analysis as DOCX",
            data=docx_file,
            file_name="activism_message_analysis.docx",
            mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
        )