Update app.py
Browse files
app.py
CHANGED
|
@@ -10,8 +10,15 @@ import io
|
|
| 10 |
nltk.download('punkt')
|
| 11 |
|
| 12 |
# Load AI models once to optimize performance
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Updated tone categories
|
| 17 |
tone_categories = [
|
|
@@ -33,15 +40,23 @@ def detect_language(text):
|
|
| 33 |
except Exception:
|
| 34 |
return "unknown"
|
| 35 |
|
| 36 |
-
# Analyze tone using
|
| 37 |
def analyze_tone(text):
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Extract frames using BART model
|
| 42 |
def extract_frames(text):
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Extract hashtags
|
| 47 |
def extract_hashtags(text):
|
|
|
|
| 10 |
nltk.download('punkt')
|
| 11 |
|
| 12 |
# Load AI models once to optimize performance
|
| 13 |
+
try:
|
| 14 |
+
tone_model = pipeline("zero-shot-classification", model="cross-encoder/nli-deberta-v3-large")
|
| 15 |
+
except OSError:
|
| 16 |
+
st.error("Failed to load tone analysis model. Please check internet connection or model availability.")
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
frame_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 20 |
+
except OSError:
|
| 21 |
+
st.error("Failed to load frame classification model. Please check internet connection or model availability.")
|
| 22 |
|
| 23 |
# Updated tone categories
|
| 24 |
tone_categories = [
|
|
|
|
| 40 |
except Exception:
|
| 41 |
return "unknown"
|
| 42 |
|
| 43 |
+
# Analyze tone using DeBERTa model
|
| 44 |
def analyze_tone(text):
|
| 45 |
+
try:
|
| 46 |
+
model_result = tone_model(text, candidate_labels=tone_categories)
|
| 47 |
+
return model_result["labels"][:2] # Top 2 tone labels
|
| 48 |
+
except Exception as e:
|
| 49 |
+
st.error(f"Error analyzing tone: {e}")
|
| 50 |
+
return ["Unknown"]
|
| 51 |
|
| 52 |
# Extract frames using BART model
|
| 53 |
def extract_frames(text):
|
| 54 |
+
try:
|
| 55 |
+
model_result = frame_model(text, candidate_labels=frame_categories)
|
| 56 |
+
return model_result["labels"][:2] # Top 2 frame labels
|
| 57 |
+
except Exception as e:
|
| 58 |
+
st.error(f"Error extracting frames: {e}")
|
| 59 |
+
return ["Unknown"]
|
| 60 |
|
| 61 |
# Extract hashtags
|
| 62 |
def extract_hashtags(text):
|