Update app.py
Browse files
app.py
CHANGED
|
@@ -3,99 +3,45 @@ import re
|
|
| 3 |
from langdetect import detect
|
| 4 |
from transformers import pipeline
|
| 5 |
import nltk
|
| 6 |
-
from nltk.tokenize import word_tokenize
|
| 7 |
-
from nltk.stem import WordNetLemmatizer
|
| 8 |
from docx import Document
|
| 9 |
import io
|
| 10 |
|
| 11 |
# Download required NLTK resources
|
| 12 |
nltk.download('punkt')
|
| 13 |
-
nltk.download('wordnet')
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# Cache model to avoid reloading on every function call
|
| 19 |
-
@st.cache_resource
|
| 20 |
-
def load_pipeline():
|
| 21 |
-
return pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 22 |
-
|
| 23 |
-
tone_model = load_pipeline()
|
| 24 |
-
frame_model = load_pipeline()
|
| 25 |
|
| 26 |
# Updated tone categories
|
| 27 |
-
tone_categories =
|
| 28 |
-
"Emotional
|
| 29 |
-
"
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"
|
| 35 |
-
"
|
| 36 |
-
"
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
# Updated frame categories (Limited to 4 selections)
|
| 43 |
-
frame_categories = {
|
| 44 |
-
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
|
| 45 |
-
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
|
| 46 |
-
"Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
|
| 47 |
-
"Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
|
| 48 |
-
"Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
|
| 49 |
-
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
|
| 50 |
-
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
|
| 51 |
-
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
|
| 52 |
-
"Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
|
| 53 |
-
"Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
|
| 54 |
-
"Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
|
| 55 |
-
"Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
|
| 56 |
-
"Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
|
| 57 |
-
"Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
|
| 58 |
-
"Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
# Language detection
|
| 62 |
def detect_language(text):
|
| 63 |
try:
|
| 64 |
return detect(text)
|
| 65 |
except Exception:
|
| 66 |
return "unknown"
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
def contains_keywords(text, keywords):
|
| 70 |
-
words = word_tokenize(text.lower())
|
| 71 |
-
lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
|
| 72 |
-
return any(keyword in lemmatized_words for keyword in keywords)
|
| 73 |
-
|
| 74 |
-
# Analyze tone based on predefined categories
|
| 75 |
def analyze_tone(text):
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
if contains_keywords(text, keywords):
|
| 79 |
-
detected_tones.add(category)
|
| 80 |
-
|
| 81 |
-
if not detected_tones:
|
| 82 |
-
model_result = tone_model(text, candidate_labels=list(tone_categories.keys()))
|
| 83 |
-
detected_tones.update(model_result["labels"][:2])
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
# Extract frames based on predefined categories (Limit to 4)
|
| 88 |
def extract_frames(text):
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
if contains_keywords(text, keywords):
|
| 92 |
-
detected_frames.add(category)
|
| 93 |
-
|
| 94 |
-
if not detected_frames:
|
| 95 |
-
model_result = frame_model(text, candidate_labels=list(frame_categories.keys()))
|
| 96 |
-
detected_frames.update(model_result["labels"][:4])
|
| 97 |
-
|
| 98 |
-
return list(detected_frames)[:4] # Ensure no more than 4 frames are selected
|
| 99 |
|
| 100 |
# Extract hashtags
|
| 101 |
def extract_hashtags(text):
|
|
@@ -141,7 +87,7 @@ def generate_docx(output_data):
|
|
| 141 |
|
| 142 |
return doc_io
|
| 143 |
|
| 144 |
-
# Streamlit app
|
| 145 |
st.title('AI-Powered Activism Message Analyzer')
|
| 146 |
|
| 147 |
st.write("Enter the text to analyze or upload a DOCX file containing captions:")
|
|
|
|
| 3 |
from langdetect import detect
|
| 4 |
from transformers import pipeline
|
| 5 |
import nltk
|
|
|
|
|
|
|
| 6 |
from docx import Document
|
| 7 |
import io
|
| 8 |
|
| 9 |
# Download required NLTK resources
|
| 10 |
nltk.download('punkt')
|
|
|
|
| 11 |
|
| 12 |
+
# Load AI models once to optimize performance
|
| 13 |
+
tone_model = pipeline("zero-shot-classification", model="facebook/roberta-large-mnli")
|
| 14 |
+
frame_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Updated tone categories
|
| 17 |
+
tone_categories = [
|
| 18 |
+
"Emotional & Urgent", "Harsh & Critical", "Negative & Somber",
|
| 19 |
+
"Empowering & Motivational", "Neutral & Informative", "Hopeful & Positive"
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
# Updated frame categories
|
| 23 |
+
frame_categories = [
|
| 24 |
+
"Human Rights & Justice", "Political & State Accountability", "Gender & Patriarchy",
|
| 25 |
+
"Religious Freedom & Persecution", "Grassroots Mobilization", "Environmental Crisis & Activism",
|
| 26 |
+
"Anti-Extremism & Anti-Violence", "Social Inequality & Economic Disparities"
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
# Detect language
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def detect_language(text):
|
| 31 |
try:
|
| 32 |
return detect(text)
|
| 33 |
except Exception:
|
| 34 |
return "unknown"
|
| 35 |
|
| 36 |
+
# Analyze tone using RoBERTa model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def analyze_tone(text):
|
| 38 |
+
model_result = tone_model(text, candidate_labels=tone_categories)
|
| 39 |
+
return model_result["labels"][:2] # Top 2 tone labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Extract frames using BART model
|
|
|
|
|
|
|
| 42 |
def extract_frames(text):
|
| 43 |
+
model_result = frame_model(text, candidate_labels=frame_categories)
|
| 44 |
+
return model_result["labels"][:2] # Top 2 frame labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Extract hashtags
|
| 47 |
def extract_hashtags(text):
|
|
|
|
| 87 |
|
| 88 |
return doc_io
|
| 89 |
|
| 90 |
+
# Streamlit app UI
|
| 91 |
st.title('AI-Powered Activism Message Analyzer')
|
| 92 |
|
| 93 |
st.write("Enter the text to analyze or upload a DOCX file containing captions:")
|