Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import re
|
3 |
+
from langdetect import detect
|
4 |
+
from transformers import pipeline
|
5 |
+
import nltk
|
6 |
+
from docx import Document
|
7 |
+
import io
|
8 |
+
|
9 |
+
# Download required NLTK resources
|
10 |
+
nltk.download('punkt')
|
11 |
+
|
12 |
+
# Updated tone categories
|
13 |
+
tone_categories = {
|
14 |
+
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis"],
|
15 |
+
"Critical": ["corrupt", "oppression", "failure", "repression", "unjust"],
|
16 |
+
"Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief"],
|
17 |
+
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change"],
|
18 |
+
"Informative": ["announcement", "event", "scheduled", "update", "details"],
|
19 |
+
"Positive": ["progress", "unity", "hope", "victory", "solidarity"],
|
20 |
+
"Urgent": ["urgent", "violence", "disappearances", "forced", "killing", "concern", "crisis"],
|
21 |
+
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust"],
|
22 |
+
"Negative": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief"],
|
23 |
+
"Empowering": ["rise", "resist", "mobilize", "inspire", "courage", "change"],
|
24 |
+
"Neutral": ["announcement", "event", "scheduled", "update", "details", "protest on"],
|
25 |
+
"Hopeful": ["progress", "unity", "hope", "victory", "together", "solidarity"]
|
26 |
+
}
|
27 |
+
|
28 |
+
# Updated frame categories
|
29 |
+
frame_categories = {
|
30 |
+
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
|
31 |
+
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
|
32 |
+
"Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
|
33 |
+
"Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
|
34 |
+
"Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
|
35 |
+
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
|
36 |
+
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
|
37 |
+
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
|
38 |
+
"Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
|
39 |
+
"Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
|
40 |
+
"Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
|
41 |
+
"Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
|
42 |
+
"Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
|
43 |
+
"Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
|
44 |
+
"Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
|
45 |
+
}
|
46 |
+
|
47 |
+
# Detect language
|
48 |
+
def detect_language(text):
|
49 |
+
try:
|
50 |
+
return detect(text)
|
51 |
+
except Exception as e:
|
52 |
+
st.write(f"Error detecting language: {e}")
|
53 |
+
return "unknown"
|
54 |
+
|
55 |
+
# Analyze tone based on predefined categories
|
56 |
+
def analyze_tone(text):
|
57 |
+
detected_tones = set()
|
58 |
+
for category, keywords in tone_categories.items():
|
59 |
+
if any(word in text.lower() for word in keywords):
|
60 |
+
detected_tones.add(category)
|
61 |
+
|
62 |
+
if not detected_tones:
|
63 |
+
tone_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
64 |
+
model_result = tone_model(text, candidate_labels=list(tone_categories.keys()))
|
65 |
+
detected_tones.update(model_result["labels"][:2])
|
66 |
+
|
67 |
+
return list(detected_tones)
|
68 |
+
|
69 |
+
# Extract hashtags
|
70 |
+
def extract_hashtags(text):
|
71 |
+
return re.findall(r"#\w+", text)
|
72 |
+
|
73 |
+
# Extract frames based on predefined categories
|
74 |
+
def extract_frames(text):
|
75 |
+
detected_frames = set()
|
76 |
+
for category, keywords in frame_categories.items():
|
77 |
+
if any(word in text.lower() for word in keywords):
|
78 |
+
detected_frames.add(category)
|
79 |
+
|
80 |
+
if not detected_frames:
|
81 |
+
frame_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
82 |
+
model_result = frame_model(text, candidate_labels=list(frame_categories.keys()))
|
83 |
+
detected_frames.update(model_result["labels"][:2])
|
84 |
+
|
85 |
+
return list(detected_frames)
|
86 |
+
|
87 |
+
# Extract captions from DOCX file based on "Post X"
|
88 |
+
def extract_captions_from_docx(docx_file):
|
89 |
+
doc = Document(docx_file)
|
90 |
+
captions = {}
|
91 |
+
current_post = None
|
92 |
+
for para in doc.paragraphs:
|
93 |
+
text = para.text.strip()
|
94 |
+
if re.match(r"Post \d+", text, re.IGNORECASE):
|
95 |
+
current_post = text
|
96 |
+
captions[current_post] = []
|
97 |
+
elif current_post:
|
98 |
+
captions[current_post].append(text)
|
99 |
+
|
100 |
+
return {post: " ".join(lines) for post, lines in captions.items() if lines}
|
101 |
+
|
102 |
+
# Generate a DOCX file in-memory with full captions
|
103 |
+
def generate_docx(output_data):
|
104 |
+
doc = Document()
|
105 |
+
doc.add_heading('Activism Message Analysis', 0)
|
106 |
+
|
107 |
+
for index, (caption, result) in enumerate(output_data.items(), start=1):
|
108 |
+
doc.add_heading(f"{index}. {caption}", level=1)
|
109 |
+
doc.add_paragraph("Full Caption:")
|
110 |
+
doc.add_paragraph(result['Full Caption'], style="Quote")
|
111 |
+
|
112 |
+
doc.add_paragraph(f"Language: {result['Language']}")
|
113 |
+
doc.add_paragraph(f"Tone of Caption: {', '.join(result['Tone of Caption'])}")
|
114 |
+
doc.add_paragraph(f"Number of Hashtags: {result['Hashtag Count']}")
|
115 |
+
doc.add_paragraph(f"Hashtags Found: {', '.join(result['Hashtags'])}")
|
116 |
+
|
117 |
+
doc.add_heading('Frames:', level=2)
|
118 |
+
for frame in result['Frames']:
|
119 |
+
doc.add_paragraph(frame)
|
120 |
+
|
121 |
+
doc_io = io.BytesIO()
|
122 |
+
doc.save(doc_io)
|
123 |
+
doc_io.seek(0)
|
124 |
+
|
125 |
+
return doc_io
|
126 |
+
|
127 |
+
# Streamlit app
|
128 |
+
st.title('AI-Powered Activism Message Analyzer with Intersectionality')
|
129 |
+
|
130 |
+
st.write("Enter the text to analyze or upload a DOCX file containing captions:")
|
131 |
+
|
132 |
+
# Text Input
|
133 |
+
input_text = st.text_area("Input Text", height=200)
|
134 |
+
|
135 |
+
# File Upload
|
136 |
+
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])
|
137 |
+
|
138 |
+
# Initialize output dictionary
|
139 |
+
output_data = {}
|
140 |
+
|
141 |
+
if input_text:
|
142 |
+
language = detect_language(input_text)
|
143 |
+
tone = analyze_tone(input_text)
|
144 |
+
hashtags = extract_hashtags(input_text)
|
145 |
+
frames = extract_frames(input_text)
|
146 |
+
|
147 |
+
output_data["Manual Input"] = {
|
148 |
+
'Full Caption': input_text,
|
149 |
+
'Language': language,
|
150 |
+
'Tone of Caption': tone,
|
151 |
+
'Hashtags': hashtags,
|
152 |
+
'Hashtag Count': len(hashtags),
|
153 |
+
'Frames': frames
|
154 |
+
}
|
155 |
+
|
156 |
+
st.success("Analysis completed for text input.")
|
157 |
+
|
158 |
+
if uploaded_file:
|
159 |
+
captions = extract_captions_from_docx(uploaded_file)
|
160 |
+
for caption, text in captions.items():
|
161 |
+
language = detect_language(text)
|
162 |
+
tone = analyze_tone(text)
|
163 |
+
hashtags = extract_hashtags(text)
|
164 |
+
frames = extract_frames(text)
|
165 |
+
|
166 |
+
output_data[caption] = {
|
167 |
+
'Full Caption': text,
|
168 |
+
'Language': language,
|
169 |
+
'Tone of Caption': tone,
|
170 |
+
'Hashtags': hashtags,
|
171 |
+
'Hashtag Count': len(hashtags),
|
172 |
+
'Frames': frames
|
173 |
+
}
|
174 |
+
|
175 |
+
st.success(f"Analysis completed for {len(captions)} posts from the DOCX file.")
|
176 |
+
|
177 |
+
# Display results
|
178 |
+
if output_data:
|
179 |
+
with st.expander("Generated Output"):
|
180 |
+
st.subheader("Analysis Results")
|
181 |
+
for index, (caption, result) in enumerate(output_data.items(), start=1):
|
182 |
+
st.write(f"### {index}. {caption}")
|
183 |
+
st.write("**Full Caption:**")
|
184 |
+
st.write(f"> {result['Full Caption']}")
|
185 |
+
st.write(f"**Language**: {result['Language']}")
|
186 |
+
st.write(f"**Tone of Caption**: {', '.join(result['Tone of Caption'])}")
|
187 |
+
st.write(f"**Number of Hashtags**: {result['Hashtag Count']}")
|
188 |
+
st.write(f"**Hashtags Found:** {', '.join(result['Hashtags'])}")
|
189 |
+
st.write("**Frames**:")
|
190 |
+
for frame in result['Frames']:
|
191 |
+
st.write(f"- {frame}")
|
192 |
+
|
193 |
+
docx_file = generate_docx(output_data)
|
194 |
+
|
195 |
+
if docx_file:
|
196 |
+
st.download_button(
|
197 |
+
label="Download Analysis as DOCX",
|
198 |
+
data=docx_file,
|
199 |
+
file_name="activism_message_analysis.docx",
|
200 |
+
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
201 |
+
)
|