File size: 7,688 Bytes
aec1dc3
6e598b9
 
 
 
 
 
d30adf0
6e598b9
 
baa2a05
9ecbe08
 
 
 
6e598b9
 
 
d7a63d9
e74345a
 
 
f521f9b
 
 
 
 
 
 
6e598b9
f521f9b
35710ed
86562c8
41f43d7
 
3ac5d0a
f521f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e598b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f521f9b
25a04de
f521f9b
 
4a42d11
6e598b9
 
 
 
 
 
 
 
e74345a
6e598b9
e74345a
f521f9b
 
 
 
 
 
 
 
6e598b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f521f9b
25a04de
f521f9b
 
4a42d11
6e598b9
 
 
 
 
 
 
e74345a
6e598b9
e74345a
f521f9b
 
 
 
 
 
 
 
6e598b9
 
 
 
 
 
 
 
 
 
 
 
 
cec815a
 
8485ab7
 
e59040d
8485ab7
2cf6049
6e598b9
 
 
 
e59040d
6e598b9
cec815a
 
e59040d
cec815a
aa87cf9
e59040d
6e598b9
 
 
 
 
 
 
 
 
 
baa2a05
6e598b9
 
 
de5d5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aec1dc3
6030adc
6e598b9
 
09139ad
8aa92d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#%%
from matplotlib.pyplot import title
import tensorflow as tf
from tensorflow import keras
from huggingface_hub import from_pretrained_keras
import pandas as pd
import matplotlib.pyplot as plt
import streamlit as st
from zipfile import ZipFile
import os

if ("0" != "mycustom"):
	import datetime
	from io import StringIO

import warnings
warnings.filterwarnings("ignore")

if ("0" == "mycustom"):
	os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
	os.environ["CUDA_VISIBLE_DEVICES"] = ""

if ("0" == "mycustom"):
	uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
	zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
	zip_file = ZipFile(zip_path)
	zip_file.extractall()
	csv_path = "jena_climate_2009_2016.csv"
	df = pd.read_csv(csv_path)

if ("0" == "mycustom"):
	mybacklogmax = 10000
	df = df.head(n=mybacklogmax)
	st.dataframe(df)

if ("0" != "mycustom"):
	myfields = [0, 1, 5, 7, 8, 10, 11]
	myfields = [1]
	mytitles = ["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"]

	mybacklogmax = 10

	atoday = datetime.date.today()

	ayear = int(atoday.strftime("%Y"))-0
	amonth = int(atoday.strftime("%m"))
	amonthday = int(atoday.strftime("%d"))

	csvString = ""
	csvString += (",").join(mytitles)
	adf = pd.DataFrame(columns=mytitles)
	for i in range((ayear-mybacklogmax),ayear,1):
		alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
		df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')

		df = df.reset_index()  # make sure indexes pair with number of rows
		for index, row in df.iterrows():
			if (row[2]!=amonth) or (row[3]!=amonthday):
				continue

			adate = ("{:02d}.{:02d}.{} 00:00:00").format(row[3], row[2], row[1])
			csvString += '\n'+(",").join([adate,"",str(row[4]),"","","","","","","","","","","",""])
			st.write(row[0],adate)
			adf = adf.append({"Date Time":adate,"T (degC)":(row[4]),}, ignore_index=True)
			break
	adf = pd.read_csv(StringIO(csvString), sep=",")
	df = adf
	st.dataframe(df)

#%%

title = "Timeseries forecasting for weather prediction"

st.title('Timeseries forecasting for weather prediction')

st.write("Demonstrates how to do timeseries forecasting using a [LSTM model.](https://keras.io/api/layers/recurrent_layers/lstm/#lstm-class)This space demonstration is forecasting for weather prediction. *n* observation is selected from validation dataset." )
st.write("Keras example authors: [Prabhanshu Attri, Yashika Sharma, Kristi Takach, Falak Shah](https://keras.io/examples/timeseries/timeseries_weather_forecasting/)")


# %% model 

titles = [
    "Pressure",
    "Temperature",
    "Temperature in Kelvin",
    "Temperature (dew point)",
    "Relative Humidity",
    "Saturation vapor pressure",
    "Vapor pressure",
    "Vapor pressure deficit",
    "Specific humidity",
    "Water vapor concentration",
    "Airtight",
    "Wind speed",
    "Maximum wind speed",
    "Wind direction in degrees",
]

feature_keys = [
    "p (mbar)",
    "T (degC)",
    "Tpot (K)",
    "Tdew (degC)",
    "rh (%)",
    "VPmax (mbar)",
    "VPact (mbar)",
    "VPdef (mbar)",
    "sh (g/kg)",
    "H2OC (mmol/mol)",
    "rho (g/m**3)",
    "wv (m/s)",
    "max. wv (m/s)",
    "wd (deg)",
]

date_time_key = "Date Time"
split_fraction = 0.715
train_split = int(split_fraction * int(df.shape[0]))
step = 6

past = 720
future = 72
learning_rate = 0.001
batch_size = 256
epochs = 10

if ("0" != "mycustom"):
	past = 0
	future = 1
	batch_size = 1
	step = 1

def normalize(data, train_split):
    data_mean = data[:train_split].mean(axis=0)
    data_std = data[:train_split].std(axis=0)
    return (data - data_mean) / data_std

print(
    "The selected parameters are:",
    ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
)
selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]

if ("0" != "mycustom"):
	print(
	    "The selected parameters are:",
	    ", ".join([titles[i] for i in myfields]),
	)
	selected_features = [feature_keys[i] for i in myfields]

features = df[selected_features]
features.index = df[date_time_key]
features.head()

features = normalize(features.values, train_split)
features = pd.DataFrame(features)
features.head()

train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]


split_fraction = 0.715
train_split = int(split_fraction * int(df.shape[0]))
step = 6

past = 720
future = 72
learning_rate = 0.001
batch_size = 256
epochs = 10

if ("0" != "mycustom"):
	past = 0
	future = 1
	batch_size = 1
	step = 1

def normalize(data, train_split):
    data_mean = data[:train_split].mean(axis=0)
    data_std = data[:train_split].std(axis=0)
    return (data - data_mean) / data_std
print(
    "The selected parameters are:",
    ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
)
selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]

if ("0" != "mycustom"):
	print(
	    "The selected parameters are:",
	    ", ".join([titles[i] for i in myfields]),
	)
	selected_features = [feature_keys[i] for i in myfields]

features = df[selected_features]
features.index = df[date_time_key]
features.head()

features = normalize(features.values, train_split)
features = pd.DataFrame(features)
features.head()

train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]
start = past + future
end = start + train_split

if ("0" == "mycustom"):
	x_train = train_data[[i for i in range(7)]].values
	y_train = features.iloc[start:end][[1]]
if ("0" != "mycustom"):
	x_train = train_data[[i for i in range(len(myfields))]].values
	y_train = features.iloc[start:end][[0]]

sequence_length = int(past / step)
x_end = len(val_data) - past - future

label_start = train_split + past + future
st.write(label_start)

if ("0" == "mycustom"):
	x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
	y_val = features.iloc[label_start:][[1]]
if ("0" != "mycustom"):
	x_val = val_data.iloc[:x_end][[i for i in range(len(myfields))]].values
	y_val = features.iloc[label_start:][[0]]

dataset_val = keras.preprocessing.timeseries_dataset_from_array(
    x_val,
    y_val,
    sequence_length=sequence_length,
    sampling_rate=step,
    batch_size=batch_size,
)
#%%
model = from_pretrained_keras("keras-io/timeseries_forecasting_for_weather")

#%% 
st.set_option('deprecation.showPyplotGlobalUse', False)
def plot():
	n = st.sidebar.slider("Step", min_value = 1, max_value=5, value = 1)
	def show_plot(plot_data, delta, title):
		labels = ["History", "True Future", "Model Prediction"]
		marker = [".-", "rx", "go"]
		time_steps = list(range(-(plot_data[0].shape[0]), 0))
		if delta:
			future = delta
		else:
			future = 0

		plt.title(title)
		for i, val in enumerate(plot_data):
			if i:
				plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i])
			else:
				plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
		plt.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05),
			ncol=3, fancybox=True, shadow=True)
		plt.xlim([time_steps[0], (future + 5) * 2])
		plt.xlabel("Time-Step")
		plt.show()
		return


	for x, y in dataset_val.take(n):
		if ("0" == "mycustom"):
			show_plot(
				[x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]],
				12,
				f"{n} Step Prediction",
			)
		if ("0" != "mycustom"):
			show_plot(
				[x[0][:, 0].numpy(), y[0].numpy(), model.predict(x)[0]],
				12,
				f"{n} Step Prediction",
			)


fig = plot()
st.pyplot(fig)

# %%