Spaces:
Runtime error
Runtime error
File size: 7,688 Bytes
aec1dc3 6e598b9 d30adf0 6e598b9 baa2a05 9ecbe08 6e598b9 d7a63d9 e74345a f521f9b 6e598b9 f521f9b 35710ed 86562c8 41f43d7 3ac5d0a f521f9b 6e598b9 f521f9b 25a04de f521f9b 4a42d11 6e598b9 e74345a 6e598b9 e74345a f521f9b 6e598b9 f521f9b 25a04de f521f9b 4a42d11 6e598b9 e74345a 6e598b9 e74345a f521f9b 6e598b9 cec815a 8485ab7 e59040d 8485ab7 2cf6049 6e598b9 e59040d 6e598b9 cec815a e59040d cec815a aa87cf9 e59040d 6e598b9 baa2a05 6e598b9 de5d5cf aec1dc3 6030adc 6e598b9 09139ad 8aa92d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#%%
from matplotlib.pyplot import title
import tensorflow as tf
from tensorflow import keras
from huggingface_hub import from_pretrained_keras
import pandas as pd
import matplotlib.pyplot as plt
import streamlit as st
from zipfile import ZipFile
import os
if ("0" != "mycustom"):
import datetime
from io import StringIO
import warnings
warnings.filterwarnings("ignore")
if ("0" == "mycustom"):
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = ""
if ("0" == "mycustom"):
uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
zip_file = ZipFile(zip_path)
zip_file.extractall()
csv_path = "jena_climate_2009_2016.csv"
df = pd.read_csv(csv_path)
if ("0" == "mycustom"):
mybacklogmax = 10000
df = df.head(n=mybacklogmax)
st.dataframe(df)
if ("0" != "mycustom"):
myfields = [0, 1, 5, 7, 8, 10, 11]
myfields = [1]
mytitles = ["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"]
mybacklogmax = 10
atoday = datetime.date.today()
ayear = int(atoday.strftime("%Y"))-0
amonth = int(atoday.strftime("%m"))
amonthday = int(atoday.strftime("%d"))
csvString = ""
csvString += (",").join(mytitles)
adf = pd.DataFrame(columns=mytitles)
for i in range((ayear-mybacklogmax),ayear,1):
alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
df = df.reset_index() # make sure indexes pair with number of rows
for index, row in df.iterrows():
if (row[2]!=amonth) or (row[3]!=amonthday):
continue
adate = ("{:02d}.{:02d}.{} 00:00:00").format(row[3], row[2], row[1])
csvString += '\n'+(",").join([adate,"",str(row[4]),"","","","","","","","","","","",""])
st.write(row[0],adate)
adf = adf.append({"Date Time":adate,"T (degC)":(row[4]),}, ignore_index=True)
break
adf = pd.read_csv(StringIO(csvString), sep=",")
df = adf
st.dataframe(df)
#%%
title = "Timeseries forecasting for weather prediction"
st.title('Timeseries forecasting for weather prediction')
st.write("Demonstrates how to do timeseries forecasting using a [LSTM model.](https://keras.io/api/layers/recurrent_layers/lstm/#lstm-class)This space demonstration is forecasting for weather prediction. *n* observation is selected from validation dataset." )
st.write("Keras example authors: [Prabhanshu Attri, Yashika Sharma, Kristi Takach, Falak Shah](https://keras.io/examples/timeseries/timeseries_weather_forecasting/)")
# %% model
titles = [
"Pressure",
"Temperature",
"Temperature in Kelvin",
"Temperature (dew point)",
"Relative Humidity",
"Saturation vapor pressure",
"Vapor pressure",
"Vapor pressure deficit",
"Specific humidity",
"Water vapor concentration",
"Airtight",
"Wind speed",
"Maximum wind speed",
"Wind direction in degrees",
]
feature_keys = [
"p (mbar)",
"T (degC)",
"Tpot (K)",
"Tdew (degC)",
"rh (%)",
"VPmax (mbar)",
"VPact (mbar)",
"VPdef (mbar)",
"sh (g/kg)",
"H2OC (mmol/mol)",
"rho (g/m**3)",
"wv (m/s)",
"max. wv (m/s)",
"wd (deg)",
]
date_time_key = "Date Time"
split_fraction = 0.715
train_split = int(split_fraction * int(df.shape[0]))
step = 6
past = 720
future = 72
learning_rate = 0.001
batch_size = 256
epochs = 10
if ("0" != "mycustom"):
past = 0
future = 1
batch_size = 1
step = 1
def normalize(data, train_split):
data_mean = data[:train_split].mean(axis=0)
data_std = data[:train_split].std(axis=0)
return (data - data_mean) / data_std
print(
"The selected parameters are:",
", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
)
selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]
if ("0" != "mycustom"):
print(
"The selected parameters are:",
", ".join([titles[i] for i in myfields]),
)
selected_features = [feature_keys[i] for i in myfields]
features = df[selected_features]
features.index = df[date_time_key]
features.head()
features = normalize(features.values, train_split)
features = pd.DataFrame(features)
features.head()
train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]
split_fraction = 0.715
train_split = int(split_fraction * int(df.shape[0]))
step = 6
past = 720
future = 72
learning_rate = 0.001
batch_size = 256
epochs = 10
if ("0" != "mycustom"):
past = 0
future = 1
batch_size = 1
step = 1
def normalize(data, train_split):
data_mean = data[:train_split].mean(axis=0)
data_std = data[:train_split].std(axis=0)
return (data - data_mean) / data_std
print(
"The selected parameters are:",
", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
)
selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]
if ("0" != "mycustom"):
print(
"The selected parameters are:",
", ".join([titles[i] for i in myfields]),
)
selected_features = [feature_keys[i] for i in myfields]
features = df[selected_features]
features.index = df[date_time_key]
features.head()
features = normalize(features.values, train_split)
features = pd.DataFrame(features)
features.head()
train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]
start = past + future
end = start + train_split
if ("0" == "mycustom"):
x_train = train_data[[i for i in range(7)]].values
y_train = features.iloc[start:end][[1]]
if ("0" != "mycustom"):
x_train = train_data[[i for i in range(len(myfields))]].values
y_train = features.iloc[start:end][[0]]
sequence_length = int(past / step)
x_end = len(val_data) - past - future
label_start = train_split + past + future
st.write(label_start)
if ("0" == "mycustom"):
x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
y_val = features.iloc[label_start:][[1]]
if ("0" != "mycustom"):
x_val = val_data.iloc[:x_end][[i for i in range(len(myfields))]].values
y_val = features.iloc[label_start:][[0]]
dataset_val = keras.preprocessing.timeseries_dataset_from_array(
x_val,
y_val,
sequence_length=sequence_length,
sampling_rate=step,
batch_size=batch_size,
)
#%%
model = from_pretrained_keras("keras-io/timeseries_forecasting_for_weather")
#%%
st.set_option('deprecation.showPyplotGlobalUse', False)
def plot():
n = st.sidebar.slider("Step", min_value = 1, max_value=5, value = 1)
def show_plot(plot_data, delta, title):
labels = ["History", "True Future", "Model Prediction"]
marker = [".-", "rx", "go"]
time_steps = list(range(-(plot_data[0].shape[0]), 0))
if delta:
future = delta
else:
future = 0
plt.title(title)
for i, val in enumerate(plot_data):
if i:
plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i])
else:
plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
plt.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05),
ncol=3, fancybox=True, shadow=True)
plt.xlim([time_steps[0], (future + 5) * 2])
plt.xlabel("Time-Step")
plt.show()
return
for x, y in dataset_val.take(n):
if ("0" == "mycustom"):
show_plot(
[x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]],
12,
f"{n} Step Prediction",
)
if ("0" != "mycustom"):
show_plot(
[x[0][:, 0].numpy(), y[0].numpy(), model.predict(x)[0]],
12,
f"{n} Step Prediction",
)
fig = plot()
st.pyplot(fig)
# %%
|