a10 commited on
Commit
e74345a
·
1 Parent(s): 795bda2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -89
app.py CHANGED
@@ -1,4 +1,3 @@
1
-
2
  #%%
3
  from matplotlib.pyplot import title
4
  import tensorflow as tf
@@ -9,57 +8,20 @@ import matplotlib.pyplot as plt
9
  import streamlit as st
10
  from zipfile import ZipFile
11
  import os
12
- import datetime
13
- from io import StringIO
14
 
15
  import warnings
16
  warnings.filterwarnings("ignore")
17
 
18
- #
19
- mylist = [0, 1, 5, 7, 8, 10, 11]
20
- mylist = [1]
21
- mytitles = ["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"]
22
- df = pd.DataFrame(columns=mytitles)
23
- os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
24
- os.environ["CUDA_VISIBLE_DEVICES"] = ""
25
- mybacklogmax = 5
26
-
27
- if ("0" == ""):
28
- uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
29
- zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
30
- zip_file = ZipFile(zip_path)
31
- zip_file.extractall()
32
- csv_path = "jena_climate_2009_2016.csv"
33
- df = pd.read_csv(csv_path)
34
- st.dataframe(df)
35
-
36
- if ("0" != ""):
37
- today = datetime.date.today()
38
-
39
- ayear = int(today.strftime("%Y"))-0
40
- amonth = int(today.strftime("%m"))
41
- amonthday = int(today.strftime("%d"))
42
-
43
- csvString = ""
44
- csvString += (",").join(mytitles)
45
- adf = pd.DataFrame(columns=mytitles)
46
- for i in range((ayear-mybacklogmax),ayear,1):
47
- alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
48
- df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
49
-
50
- df = df.reset_index() # make sure indexes pair with number of rows
51
- for index, row in df.iterrows():
52
- if (row[2]!=amonth) or (row[3]!=amonthday):
53
- continue
54
-
55
- adate = ("{:02d}.{:02d}.{} 00:00:00").format(row[3], row[2], row[1])
56
- csvString += '\n'+(",").join([adate,"",str(row[4]),"","","","","","","","","","","",""])
57
- st.write(row[0],adate)
58
- adf = adf.append({"Date Time":adate,"T (degC)":(row[4]),}, ignore_index=True)
59
- break
60
- adf = pd.read_csv(StringIO(csvString), sep=",")
61
- df = adf
62
- st.dataframe(df)
63
 
64
  #%%
65
 
@@ -127,9 +89,9 @@ def normalize(data, train_split):
127
 
128
  print(
129
  "The selected parameters are:",
130
- ", ".join([titles[i] for i in mylist]),
131
  )
132
- selected_features = [feature_keys[i] for i in mylist]
133
  features = df[selected_features]
134
  features.index = df[date_time_key]
135
  features.head()
@@ -159,9 +121,9 @@ def normalize(data, train_split):
159
  return (data - data_mean) / data_std
160
  print(
161
  "The selected parameters are:",
162
- ", ".join([titles[i] for i in mylist]),
163
  )
164
- selected_features = [feature_keys[i] for i in mylist]
165
  features = df[selected_features]
166
  features.index = df[date_time_key]
167
  features.head()
@@ -175,48 +137,16 @@ val_data = features.loc[train_split:]
175
  start = past + future
176
  end = start + train_split
177
 
178
- st.dataframe(features)
179
- st.dataframe(train_data)
180
- st.dataframe(val_data)
181
-
182
- myrangeend = int(split_fraction*mybacklogmax)
183
- #mycolumns = df[date_time_key]
184
- mycolumns = pd.RangeIndex(0, myrangeend).to_series()
185
- #train_data = train_data.reindex(columns=mycolumns)
186
-
187
- st.write(val_data.to_numpy())
188
-
189
- #x_train = train_data[[i for i in range(myrangeend)]].values
190
- x_train = train_data.to_numpy()
191
- #y_train = features.iloc[start:end][[1]]
192
- #y_train = features.reindex(columns=mycolumns).iloc[start:end][[1]]
193
-
194
-
195
- y_train = df[date_time_key].loc[0 : train_split - 1].to_numpy()
196
-
197
- st.write(x_train)
198
- st.write(y_train)
199
-
200
 
201
  sequence_length = int(past / step)
202
  x_end = len(val_data) - past - future
203
 
204
  label_start = train_split + past + future
205
 
206
- #x_val = val_data.iloc[:x_end][[i for i in range(myrangeend)]].values
207
- #y_val = features.iloc[label_start:][[1]]
208
-
209
- x_val = val_data.iloc[:x_end].to_numpy()
210
- y_val = df[date_time_key].iloc[label_start:].to_numpy()
211
-
212
- #x_val = val_data.reindex(columns=mycolumns)
213
- #x_val = x_val.iloc[:x_end][[i for i in range(myrangeend)]].values
214
- #y_val = features.reindex(columns=mycolumns)
215
- #y_val = y_val.iloc[label_start:][[1]]
216
-
217
- st.write(x_val,x_end)
218
- st.write(y_val,label_start)
219
-
220
 
221
  dataset_val = keras.preprocessing.timeseries_dataset_from_array(
222
  x_val,
@@ -266,4 +196,3 @@ fig = plot()
266
  st.pyplot(fig)
267
 
268
  # %%
269
-
 
 
1
  #%%
2
  from matplotlib.pyplot import title
3
  import tensorflow as tf
 
8
  import streamlit as st
9
  from zipfile import ZipFile
10
  import os
 
 
11
 
12
  import warnings
13
  warnings.filterwarnings("ignore")
14
 
15
+ if ("0" == "mycustom"):
16
+ os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
17
+ os.environ["CUDA_VISIBLE_DEVICES"] = ""
18
+
19
+ uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
20
+ zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
21
+ zip_file = ZipFile(zip_path)
22
+ zip_file.extractall()
23
+ csv_path = "jena_climate_2009_2016.csv"
24
+ df = pd.read_csv(csv_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  #%%
27
 
 
89
 
90
  print(
91
  "The selected parameters are:",
92
+ ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
93
  )
94
+ selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]
95
  features = df[selected_features]
96
  features.index = df[date_time_key]
97
  features.head()
 
121
  return (data - data_mean) / data_std
122
  print(
123
  "The selected parameters are:",
124
+ ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]),
125
  )
126
+ selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]]
127
  features = df[selected_features]
128
  features.index = df[date_time_key]
129
  features.head()
 
137
  start = past + future
138
  end = start + train_split
139
 
140
+ x_train = train_data[[i for i in range(7)]].values
141
+ y_train = features.iloc[start:end][[1]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  sequence_length = int(past / step)
144
  x_end = len(val_data) - past - future
145
 
146
  label_start = train_split + past + future
147
 
148
+ x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
149
+ y_val = features.iloc[label_start:][[1]]
 
 
 
 
 
 
 
 
 
 
 
 
150
 
151
  dataset_val = keras.preprocessing.timeseries_dataset_from_array(
152
  x_val,
 
196
  st.pyplot(fig)
197
 
198
  # %%