Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -239,43 +239,43 @@ model = from_pretrained_keras("keras-io/timeseries_forecasting_for_weather")
|
|
239 |
#%%
|
240 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
241 |
def plot():
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
for x, y in dataset_val.take(n):
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
|
280 |
|
281 |
fig = plot()
|
|
|
239 |
#%%
|
240 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
241 |
def plot():
|
242 |
+
n = st.sidebar.slider("Step", min_value = 1, max_value=5, value = 1)
|
243 |
+
def show_plot(plot_data, delta, title):
|
244 |
+
labels = ["History", "True Future", "Model Prediction"]
|
245 |
+
marker = [".-", "rx", "go"]
|
246 |
+
time_steps = list(range(-(plot_data[0].shape[0]), 0))
|
247 |
+
if delta:
|
248 |
+
future = delta
|
249 |
+
else:
|
250 |
+
future = 0
|
251 |
+
|
252 |
+
plt.title(title)
|
253 |
+
for i, val in enumerate(plot_data):
|
254 |
+
if i:
|
255 |
+
plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i])
|
256 |
+
else:
|
257 |
+
plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
|
258 |
+
plt.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05),
|
259 |
+
ncol=3, fancybox=True, shadow=True)
|
260 |
+
plt.xlim([time_steps[0], (future + 5) * 2])
|
261 |
+
plt.xlabel("Time-Step")
|
262 |
+
plt.show()
|
263 |
+
return
|
264 |
+
|
265 |
+
|
266 |
+
for x, y in dataset_val.take(n):
|
267 |
+
if ("0" == "mycustom"):
|
268 |
+
show_plot(
|
269 |
+
[x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]],
|
270 |
+
12,
|
271 |
+
f"{n} Step Prediction",
|
272 |
+
)
|
273 |
+
if ("0" != "mycustom"):
|
274 |
+
show_plot(
|
275 |
+
[x[0][:, 0].numpy(), y[0].numpy(), model.predict(x)[0]],
|
276 |
+
12,
|
277 |
+
f"{n} Step Prediction",
|
278 |
+
)
|
279 |
|
280 |
|
281 |
fig = plot()
|