Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,226 @@
|
|
1 |
-
# 19feb2023
|
2 |
-
#https://huggingface.co/spaces/keras-io/timeseries_forecasting_for_weather/
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit as st
|
|
|
|
|
5 |
import datetime
|
6 |
-
import pandas as pd
|
7 |
-
import numpy as np
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
for i in range(ayear-backlogmax,ayear,1):
|
21 |
-
alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
|
22 |
-
df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
|
23 |
-
st.write(i)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
adf = adf.append({"Date Time":adate,"T (degC)":row[4],}, ignore_index=True)
|
33 |
-
break
|
34 |
|
35 |
-
|
|
|
|
|
|
|
1 |
|
2 |
+
#%%
|
3 |
+
from matplotlib.pyplot import title
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow import keras
|
6 |
+
from huggingface_hub import from_pretrained_keras
|
7 |
+
import pandas as pd
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
import streamlit as st
|
10 |
+
from zipfile import ZipFile
|
11 |
+
import os
|
12 |
import datetime
|
|
|
|
|
13 |
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings("ignore")
|
16 |
+
|
17 |
+
#
|
18 |
+
mylist = [0, 1, 5, 7, 8, 10, 11]
|
19 |
+
mylist = [0, 2]
|
20 |
+
df = pd.DataFrame(columns=["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"])
|
21 |
+
|
22 |
+
if ("0" == ""):
|
23 |
+
uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
|
24 |
+
zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
|
25 |
+
zip_file = ZipFile(zip_path)
|
26 |
+
zip_file.extractall()
|
27 |
+
csv_path = "jena_climate_2009_2016.csv"
|
28 |
+
df = pd.read_csv(csv_path)
|
29 |
+
|
30 |
+
if ("0" != ""):
|
31 |
+
backlogmax = 4
|
32 |
+
today = datetime.date.today()
|
33 |
+
|
34 |
+
ayear = int(today.strftime("%Y"))-0
|
35 |
+
amonth = int(today.strftime("%m"))
|
36 |
+
amonthday = int(today.strftime("%d"))
|
37 |
+
|
38 |
+
adf = pd.DataFrame(columns=["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"])
|
39 |
+
for i in range(ayear-backlogmax,ayear,1):
|
40 |
+
alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
|
41 |
+
df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
|
42 |
+
|
43 |
+
df = df.reset_index() # make sure indexes pair with number of rows
|
44 |
+
for index, row in df.iterrows():
|
45 |
+
if (row[2]!=amonth) or (row[3]!=amonthday):
|
46 |
+
continue
|
47 |
+
|
48 |
+
adate = ("{:02d}.{:02d}.{} 00:00:00").format(row[3], row[2], row[1])
|
49 |
+
st.write(adate)
|
50 |
+
adf = adf.append({"Date Time":adate,"T (degC)":row[4],}, ignore_index=True)
|
51 |
+
break
|
52 |
+
df = adf
|
53 |
+
|
54 |
+
#%%
|
55 |
+
|
56 |
+
title = "Timeseries forecasting for weather prediction"
|
57 |
+
|
58 |
+
st.title('Timeseries forecasting for weather prediction')
|
59 |
+
|
60 |
+
st.write("Demonstrates how to do timeseries forecasting using a [LSTM model.](https://keras.io/api/layers/recurrent_layers/lstm/#lstm-class)This space demonstration is forecasting for weather prediction. *n* observation is selected from validation dataset." )
|
61 |
+
st.write("Keras example authors: [Prabhanshu Attri, Yashika Sharma, Kristi Takach, Falak Shah](https://keras.io/examples/timeseries/timeseries_weather_forecasting/)")
|
62 |
+
|
63 |
+
|
64 |
+
# %% model
|
65 |
+
|
66 |
+
titles = [
|
67 |
+
"Pressure",
|
68 |
+
"Temperature",
|
69 |
+
"Temperature in Kelvin",
|
70 |
+
"Temperature (dew point)",
|
71 |
+
"Relative Humidity",
|
72 |
+
"Saturation vapor pressure",
|
73 |
+
"Vapor pressure",
|
74 |
+
"Vapor pressure deficit",
|
75 |
+
"Specific humidity",
|
76 |
+
"Water vapor concentration",
|
77 |
+
"Airtight",
|
78 |
+
"Wind speed",
|
79 |
+
"Maximum wind speed",
|
80 |
+
"Wind direction in degrees",
|
81 |
+
]
|
82 |
+
|
83 |
+
feature_keys = [
|
84 |
+
"p (mbar)",
|
85 |
+
"T (degC)",
|
86 |
+
"Tpot (K)",
|
87 |
+
"Tdew (degC)",
|
88 |
+
"rh (%)",
|
89 |
+
"VPmax (mbar)",
|
90 |
+
"VPact (mbar)",
|
91 |
+
"VPdef (mbar)",
|
92 |
+
"sh (g/kg)",
|
93 |
+
"H2OC (mmol/mol)",
|
94 |
+
"rho (g/m**3)",
|
95 |
+
"wv (m/s)",
|
96 |
+
"max. wv (m/s)",
|
97 |
+
"wd (deg)",
|
98 |
+
]
|
99 |
+
|
100 |
+
date_time_key = "Date Time"
|
101 |
+
split_fraction = 0.715
|
102 |
+
train_split = int(split_fraction * int(df.shape[0]))
|
103 |
+
step = 6
|
104 |
+
|
105 |
+
past = 720
|
106 |
+
future = 72
|
107 |
+
learning_rate = 0.001
|
108 |
+
batch_size = 256
|
109 |
+
epochs = 10
|
110 |
+
|
111 |
+
|
112 |
+
def normalize(data, train_split):
|
113 |
+
data_mean = data[:train_split].mean(axis=0)
|
114 |
+
data_std = data[:train_split].std(axis=0)
|
115 |
+
return (data - data_mean) / data_std
|
116 |
+
|
117 |
+
|
118 |
+
print(
|
119 |
+
"The selected parameters are:",
|
120 |
+
", ".join([titles[i] for i in mylist]),
|
121 |
+
)
|
122 |
+
selected_features = [feature_keys[i] for i in mylist]
|
123 |
+
features = df[selected_features]
|
124 |
+
features.index = df[date_time_key]
|
125 |
+
features.head()
|
126 |
+
|
127 |
+
features = normalize(features.values, train_split)
|
128 |
+
features = pd.DataFrame(features)
|
129 |
+
features.head()
|
130 |
+
|
131 |
+
train_data = features.loc[0 : train_split - 1]
|
132 |
+
val_data = features.loc[train_split:]
|
133 |
+
|
134 |
+
|
135 |
+
split_fraction = 0.715
|
136 |
+
train_split = int(split_fraction * int(df.shape[0]))
|
137 |
+
step = 6
|
138 |
+
|
139 |
+
past = 720
|
140 |
+
future = 72
|
141 |
+
learning_rate = 0.001
|
142 |
+
batch_size = 256
|
143 |
+
epochs = 10
|
144 |
+
|
145 |
+
|
146 |
+
def normalize(data, train_split):
|
147 |
+
data_mean = data[:train_split].mean(axis=0)
|
148 |
+
data_std = data[:train_split].std(axis=0)
|
149 |
+
return (data - data_mean) / data_std
|
150 |
+
print(
|
151 |
+
"The selected parameters are:",
|
152 |
+
", ".join([titles[i] for i in mylist]),
|
153 |
+
)
|
154 |
+
selected_features = [feature_keys[i] for i in mylist]
|
155 |
+
features = df[selected_features]
|
156 |
+
features.index = df[date_time_key]
|
157 |
+
features.head()
|
158 |
+
|
159 |
+
features = normalize(features.values, train_split)
|
160 |
+
features = pd.DataFrame(features)
|
161 |
+
features.head()
|
162 |
+
|
163 |
+
train_data = features.loc[0 : train_split - 1]
|
164 |
+
val_data = features.loc[train_split:]
|
165 |
+
start = past + future
|
166 |
+
end = start + train_split
|
167 |
+
|
168 |
+
x_train = train_data[[i for i in range(7)]].values
|
169 |
+
y_train = features.iloc[start:end][[1]]
|
170 |
+
|
171 |
+
sequence_length = int(past / step)
|
172 |
+
x_end = len(val_data) - past - future
|
173 |
+
|
174 |
+
label_start = train_split + past + future
|
175 |
+
|
176 |
+
x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
|
177 |
+
y_val = features.iloc[label_start:][[1]]
|
178 |
+
|
179 |
+
dataset_val = keras.preprocessing.timeseries_dataset_from_array(
|
180 |
+
x_val,
|
181 |
+
y_val,
|
182 |
+
sequence_length=sequence_length,
|
183 |
+
sampling_rate=step,
|
184 |
+
batch_size=batch_size,
|
185 |
+
)
|
186 |
+
#%%
|
187 |
+
model = from_pretrained_keras("keras-io/timeseries_forecasting_for_weather")
|
188 |
|
189 |
+
#%%
|
190 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
191 |
+
def plot():
|
192 |
+
n = st.sidebar.slider("Step", min_value = 1, max_value=5, value = 1)
|
193 |
+
def show_plot(plot_data, delta, title):
|
194 |
+
labels = ["History", "True Future", "Model Prediction"]
|
195 |
+
marker = [".-", "rx", "go"]
|
196 |
+
time_steps = list(range(-(plot_data[0].shape[0]), 0))
|
197 |
+
if delta:
|
198 |
+
future = delta
|
199 |
+
else:
|
200 |
+
future = 0
|
201 |
|
202 |
+
plt.title(title)
|
203 |
+
for i, val in enumerate(plot_data):
|
204 |
+
if i:
|
205 |
+
plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i])
|
206 |
+
else:
|
207 |
+
plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
|
208 |
+
plt.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05),
|
209 |
+
ncol=3, fancybox=True, shadow=True)
|
210 |
+
plt.xlim([time_steps[0], (future + 5) * 2])
|
211 |
+
plt.xlabel("Time-Step")
|
212 |
+
plt.show()
|
213 |
+
return
|
214 |
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
for x, y in dataset_val.take(n):
|
217 |
+
show_plot(
|
218 |
+
[x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]],
|
219 |
+
12,
|
220 |
+
f"{n} Step Prediction",
|
221 |
+
)
|
222 |
|
223 |
+
fig = plot()
|
224 |
+
st.pyplot(fig)
|
|
|
|
|
225 |
|
226 |
+
# %%
|