File size: 4,157 Bytes
7c5d1d0
7a63bb7
a719e13
2750f6c
 
a178285
2750f6c
a178285
de496ae
7c5d1d0
a178285
2750f6c
a178285
 
 
 
 
 
 
7a63bb7
2750f6c
 
96a2bd1
 
 
 
 
 
 
373ea98
 
96a2bd1
373ea98
3e635fa
a719e13
 
 
7a63bb7
96a2bd1
2ab8b05
 
 
373ea98
a719e13
 
 
 
2d5fce6
de496ae
a719e13
 
 
de496ae
 
2d5fce6
a719e13
 
 
7a63bb7
373ea98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96a2bd1
 
 
 
 
 
 
 
a178285
96a2bd1
a178285
 
 
 
 
 
 
 
 
 
96a2bd1
373ea98
 
96a2bd1
 
a178285
 
 
96a2bd1
 
a178285
96a2bd1
 
2750f6c
a178285
3e635fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import numpy as np
import pandas as pd
import joblib
import warnings
from huggingface_hub import hf_hub_download

# Suppress warnings
warnings.filterwarnings("ignore")

# Load ensemble model from Hugging Face Hub
def load_model():
    model_path = hf_hub_download(
        repo_id="Zeyadd-Mostaffa/final_ensemble_model",
        filename="final_ensemble_model.pkl"
    )
    model = joblib.load(model_path)
    print("βœ… Ensemble model loaded successfully.")
    return model

model = load_model()

# Define prediction function
def predict_employee_status(
    satisfaction_level, last_evaluation, number_project,
    average_monthly_hours, time_spend_company,
    work_accident, promotion_last_5years, salary, department, threshold=0.5
):
    departments = [
        'sales', 'accounting', 'hr', 'technical', 'support',
        'management', 'IT', 'product_mng', 'marketing', 'RandD'
    ]
    
    # One-hot encode department
    department_features = {f"department_{dept}": 0 for dept in departments}
    if department in departments:
        department_features[f"department_{department}"] = 1

    # Interaction features
    satisfaction_evaluation = satisfaction_level * last_evaluation
    work_balance = average_monthly_hours / number_project

    # Input data
    input_data = {
        "satisfaction_level": [satisfaction_level],
        "last_evaluation": [last_evaluation],
        "number_project": [number_project],
        "average_monthly_hours": [average_monthly_hours],
        "time_spend_company": [time_spend_company],
        "Work_accident": [work_accident],
        "promotion_last_5years": [promotion_last_5years],
        "salary": [salary],
        "satisfaction_evaluation": [satisfaction_evaluation],
        "work_balance": [work_balance],
        **department_features
    }

    input_df = pd.DataFrame(input_data)

    # Match training column order exactly
    expected_columns = [
        'satisfaction_level', 'last_evaluation', 'number_project', 'average_monthly_hours',
        'time_spend_company', 'Work_accident', 'promotion_last_5years', 'salary',
        'satisfaction_evaluation', 'work_balance',
        'department_IT', 'department_RandD', 'department_accounting', 'department_hr',
        'department_management', 'department_marketing', 'department_product_mng',
        'department_sales', 'department_support', 'department_technical'
    ]

    for col in expected_columns:
        if col not in input_df.columns:
            input_df[col] = 0
    input_df = input_df[expected_columns]

    # Predict
    try:
        prob = model.predict_proba(input_df)[0][1]
        result = "βœ… Employee is likely to quit." if prob >= threshold else "βœ… Employee is likely to stay."
        return f"{result} (Probability: {prob:.2%})"
    except Exception as e:
        return f"❌ Prediction error: {str(e)}"

# Gradio Interface
def gradio_interface():
    interface = gr.Interface(
        fn=predict_employee_status,
        inputs=[
            gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
            gr.Number(label="Last Evaluation (0.0 - 1.0)"),
            gr.Number(label="Number of Projects (1 - 10)"),
            gr.Number(label="Average Monthly Hours (80 - 320)"),
            gr.Number(label="Time Spend at Company (Years)"),
            gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
            gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
            gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
            gr.Dropdown(
                ['sales', 'accounting', 'hr', 'technical', 'support',
                 'management', 'IT', 'product_mng', 'marketing', 'RandD'],
                label="Department"
            ),
            gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
        ],
        outputs="text",
        title="Employee Retention Prediction System (Voting Ensemble)",
        description="Predict whether an employee is likely to stay or quit based on their profile. Supports threshold adjustment.",
        theme="dark"
    )
    interface.launch()

gradio_interface()