Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,26 +4,20 @@ import pandas as pd
|
|
4 |
import joblib
|
5 |
import os
|
6 |
import warnings
|
7 |
-
import
|
8 |
|
|
|
9 |
warnings.filterwarnings("ignore")
|
10 |
|
|
|
11 |
def load_model():
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
try:
|
21 |
-
model = joblib.load(pkl_path)
|
22 |
-
print("β
Ensemble model loaded.")
|
23 |
-
return model
|
24 |
-
except Exception as e:
|
25 |
-
print(f"β Failed to load model: {e}")
|
26 |
-
return None
|
27 |
|
28 |
model = load_model()
|
29 |
|
@@ -32,19 +26,15 @@ def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
|
32 |
average_monthly_hours, time_spend_company,
|
33 |
work_accident, promotion_last_5years, salary, department, threshold=0.5):
|
34 |
|
35 |
-
departments = [
|
36 |
-
|
37 |
-
'product_mng', 'sales', 'support', 'technical'
|
38 |
-
]
|
39 |
department_features = {f"department_{dept}": 0 for dept in departments}
|
40 |
if department in departments:
|
41 |
department_features[f"department_{department}"] = 1
|
42 |
|
43 |
-
# Feature engineering
|
44 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
45 |
work_balance = average_monthly_hours / number_project
|
46 |
|
47 |
-
# Construct DataFrame
|
48 |
input_data = {
|
49 |
"satisfaction_level": [satisfaction_level],
|
50 |
"last_evaluation": [last_evaluation],
|
@@ -60,36 +50,33 @@ def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
|
60 |
}
|
61 |
|
62 |
input_df = pd.DataFrame(input_data)
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
prob = model.predict_proba(input_df)[0][1]
|
70 |
-
label = "β
Employee is likely to quit." if prob >= threshold else "β
Employee is likely to stay."
|
71 |
-
return f"{label} (Probability: {prob:.2%})"
|
72 |
-
except Exception as e:
|
73 |
-
return f"β Error during prediction: {str(e)}"
|
74 |
|
75 |
-
# Launch Gradio Interface
|
76 |
-
gr.Interface(
|
77 |
-
fn=predict_employee_status,
|
78 |
-
inputs=[
|
79 |
-
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
|
80 |
-
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
|
81 |
-
gr.Number(label="Number of Projects (1 - 10)"),
|
82 |
-
gr.Number(label="Average Monthly Hours (80 - 320)"),
|
83 |
-
gr.Number(label="Time Spend at Company (Years)"),
|
84 |
-
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
|
85 |
-
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
|
86 |
-
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
|
87 |
-
gr.Dropdown(departments, label="Department"),
|
88 |
-
gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
|
89 |
-
],
|
90 |
-
outputs="text",
|
91 |
-
title="Employee Retention Prediction System (Voting Ensemble)",
|
92 |
-
description="Predict whether an employee will stay or quit. Adjust threshold for sensitivity.",
|
93 |
-
theme="dark"
|
94 |
-
).launch()
|
95 |
|
|
|
4 |
import joblib
|
5 |
import os
|
6 |
import warnings
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
# Suppress warnings
|
10 |
warnings.filterwarnings("ignore")
|
11 |
|
12 |
+
# Load ensemble model from Hugging Face Hub
|
13 |
def load_model():
|
14 |
+
model_path = hf_hub_download(
|
15 |
+
repo_id="Zeyadd-Mostaffa/final_ensemble_model",
|
16 |
+
filename="final_ensemble_model.pkl"
|
17 |
+
)
|
18 |
+
model = joblib.load(model_path)
|
19 |
+
print("β
Ensemble model loaded successfully.")
|
20 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
model = load_model()
|
23 |
|
|
|
26 |
average_monthly_hours, time_spend_company,
|
27 |
work_accident, promotion_last_5years, salary, department, threshold=0.5):
|
28 |
|
29 |
+
departments = ['RandD', 'accounting', 'hr', 'management', 'marketing',
|
30 |
+
'product_mng', 'sales', 'support', 'technical']
|
|
|
|
|
31 |
department_features = {f"department_{dept}": 0 for dept in departments}
|
32 |
if department in departments:
|
33 |
department_features[f"department_{department}"] = 1
|
34 |
|
|
|
35 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
36 |
work_balance = average_monthly_hours / number_project
|
37 |
|
|
|
38 |
input_data = {
|
39 |
"satisfaction_level": [satisfaction_level],
|
40 |
"last_evaluation": [last_evaluation],
|
|
|
50 |
}
|
51 |
|
52 |
input_df = pd.DataFrame(input_data)
|
53 |
+
prediction_prob = model.predict_proba(input_df)[0][1]
|
54 |
+
result = "β
Employee is likely to quit." if prediction_prob >= threshold else "β
Employee is likely to stay."
|
55 |
+
return f"{result} (Probability: {prediction_prob:.2%})"
|
56 |
|
57 |
+
# Launch Gradio UI
|
58 |
+
def gradio_interface():
|
59 |
+
gr.Interface(
|
60 |
+
fn=predict_employee_status,
|
61 |
+
inputs=[
|
62 |
+
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
|
63 |
+
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
|
64 |
+
gr.Number(label="Number of Projects (1 - 10)"),
|
65 |
+
gr.Number(label="Average Monthly Hours (80 - 320)"),
|
66 |
+
gr.Number(label="Time Spend at Company (Years)"),
|
67 |
+
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
|
68 |
+
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
|
69 |
+
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
|
70 |
+
gr.Dropdown(['RandD', 'accounting', 'hr', 'management', 'marketing',
|
71 |
+
'product_mng', 'sales', 'support', 'technical'], label="Department"),
|
72 |
+
gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
|
73 |
+
],
|
74 |
+
outputs="text",
|
75 |
+
title="Employee Retention Prediction System (Ensemble from Hugging Face Hub)",
|
76 |
+
description="Predict whether an employee is likely to stay or quit based on their profile. Adjust the threshold for accurate predictions.",
|
77 |
+
theme="dark"
|
78 |
+
).launch()
|
79 |
|
80 |
+
gradio_interface()
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|