Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,6 @@ import joblib
|
|
5 |
import os
|
6 |
import warnings
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
import xgboost
|
9 |
-
|
10 |
|
11 |
# Suppress warnings
|
12 |
warnings.filterwarnings("ignore")
|
@@ -23,20 +21,27 @@ def load_model():
|
|
23 |
|
24 |
model = load_model()
|
25 |
|
26 |
-
#
|
27 |
-
def predict_employee_status(
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
department_features = {f"department_{dept}": 0 for dept in departments}
|
34 |
if department in departments:
|
35 |
department_features[f"department_{department}"] = 1
|
36 |
|
|
|
37 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
38 |
work_balance = average_monthly_hours / number_project
|
39 |
|
|
|
40 |
input_data = {
|
41 |
"satisfaction_level": [satisfaction_level],
|
42 |
"last_evaluation": [last_evaluation],
|
@@ -52,13 +57,17 @@ def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
|
52 |
}
|
53 |
|
54 |
input_df = pd.DataFrame(input_data)
|
55 |
-
prediction_prob = model.predict_proba(input_df)[0][1]
|
56 |
-
result = "β
Employee is likely to quit." if prediction_prob >= threshold else "β
Employee is likely to stay."
|
57 |
-
return f"{result} (Probability: {prediction_prob:.2%})"
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def gradio_interface():
|
61 |
-
gr.Interface(
|
62 |
fn=predict_employee_status,
|
63 |
inputs=[
|
64 |
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
|
@@ -69,16 +78,18 @@ def gradio_interface():
|
|
69 |
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
|
70 |
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
|
71 |
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
|
72 |
-
gr.Dropdown(
|
73 |
-
|
|
|
|
|
|
|
74 |
gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
|
75 |
],
|
76 |
outputs="text",
|
77 |
-
title="Employee Retention Prediction System (Ensemble
|
78 |
-
description="Predict whether an employee is likely to stay or quit based on their profile.
|
79 |
theme="dark"
|
80 |
-
)
|
|
|
81 |
|
82 |
gradio_interface()
|
83 |
-
|
84 |
-
|
|
|
5 |
import os
|
6 |
import warnings
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
8 |
|
9 |
# Suppress warnings
|
10 |
warnings.filterwarnings("ignore")
|
|
|
21 |
|
22 |
model = load_model()
|
23 |
|
24 |
+
# Define prediction function
|
25 |
+
def predict_employee_status(
|
26 |
+
satisfaction_level, last_evaluation, number_project,
|
27 |
+
average_monthly_hours, time_spend_company,
|
28 |
+
work_accident, promotion_last_5years, salary, department, threshold=0.5
|
29 |
+
):
|
30 |
+
departments = [
|
31 |
+
'sales', 'accounting', 'hr', 'technical', 'support',
|
32 |
+
'management', 'IT', 'product_mng', 'marketing', 'RandD'
|
33 |
+
]
|
34 |
+
|
35 |
+
# One-hot encode department (include department_IT explicitly)
|
36 |
department_features = {f"department_{dept}": 0 for dept in departments}
|
37 |
if department in departments:
|
38 |
department_features[f"department_{department}"] = 1
|
39 |
|
40 |
+
# Interaction features
|
41 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
42 |
work_balance = average_monthly_hours / number_project
|
43 |
|
44 |
+
# Construct input DataFrame
|
45 |
input_data = {
|
46 |
"satisfaction_level": [satisfaction_level],
|
47 |
"last_evaluation": [last_evaluation],
|
|
|
57 |
}
|
58 |
|
59 |
input_df = pd.DataFrame(input_data)
|
|
|
|
|
|
|
60 |
|
61 |
+
try:
|
62 |
+
prob = model.predict_proba(input_df)[0][1]
|
63 |
+
result = "β
Employee is likely to quit." if prob >= threshold else "β
Employee is likely to stay."
|
64 |
+
return f"{result} (Probability: {prob:.2%})"
|
65 |
+
except Exception as e:
|
66 |
+
return f"β Prediction error: {str(e)}"
|
67 |
+
|
68 |
+
# Gradio Interface
|
69 |
def gradio_interface():
|
70 |
+
interface = gr.Interface(
|
71 |
fn=predict_employee_status,
|
72 |
inputs=[
|
73 |
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
|
|
|
78 |
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
|
79 |
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
|
80 |
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
|
81 |
+
gr.Dropdown(
|
82 |
+
['sales', 'accounting', 'hr', 'technical', 'support',
|
83 |
+
'management', 'IT', 'product_mng', 'marketing', 'RandD'],
|
84 |
+
label="Department"
|
85 |
+
),
|
86 |
gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
|
87 |
],
|
88 |
outputs="text",
|
89 |
+
title="Employee Retention Prediction System (Voting Ensemble)",
|
90 |
+
description="Predict whether an employee is likely to stay or quit based on their profile. Supports threshold adjustment.",
|
91 |
theme="dark"
|
92 |
+
)
|
93 |
+
interface.launch()
|
94 |
|
95 |
gradio_interface()
|
|
|
|