Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Load your model
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
# One-hot encode the department
|
12 |
departments = [
|
13 |
'RandD', 'accounting', 'hr', 'management', 'marketing',
|
@@ -23,14 +42,19 @@ def predict_retention(satisfaction_level, last_evaluation, number_project,
|
|
23 |
] + department_encoded).reshape(1, -1)
|
24 |
|
25 |
# Predict using the model
|
|
|
|
|
|
|
26 |
try:
|
27 |
-
|
28 |
-
|
|
|
29 |
except Exception as e:
|
30 |
-
return f"Error: {str(e)}"
|
31 |
|
|
|
32 |
interface = gr.Interface(
|
33 |
-
fn=
|
34 |
inputs=[
|
35 |
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
|
36 |
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
|
|
|
1 |
import gradio as gr
|
2 |
+
import xgboost as xgb
|
3 |
import numpy as np
|
4 |
+
import joblib
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
# Suppress XGBoost warnings
|
9 |
+
warnings.filterwarnings("ignore", category=UserWarning, message=".*WARNING.*")
|
10 |
|
11 |
+
# Load your model (automatically detect XGBoost or joblib model)
|
12 |
+
def load_model():
|
13 |
+
model_path = "best_model.json" # Ensure this matches your file name
|
14 |
+
if os.path.exists(model_path):
|
15 |
+
model = xgb.Booster()
|
16 |
+
model.load_model(model_path)
|
17 |
+
print("β
Model loaded successfully.")
|
18 |
+
return model
|
19 |
+
else:
|
20 |
+
print("β Model file not found.")
|
21 |
+
return None
|
22 |
|
23 |
+
model = load_model()
|
24 |
+
|
25 |
+
# Prediction function
|
26 |
+
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
27 |
+
average_monthly_hours, time_spent_company,
|
28 |
+
work_accident, promotion_last_5years, salary, department):
|
29 |
+
|
30 |
# One-hot encode the department
|
31 |
departments = [
|
32 |
'RandD', 'accounting', 'hr', 'management', 'marketing',
|
|
|
42 |
] + department_encoded).reshape(1, -1)
|
43 |
|
44 |
# Predict using the model
|
45 |
+
if model is None:
|
46 |
+
return "β No model found. Please upload the model file."
|
47 |
+
|
48 |
try:
|
49 |
+
dmatrix = xgb.DMatrix(input_data)
|
50 |
+
prediction = model.predict(dmatrix)
|
51 |
+
return "Employee is likely to quit." if prediction[0] > 0.5 else "Employee is likely to stay."
|
52 |
except Exception as e:
|
53 |
+
return f"β Error: {str(e)}"
|
54 |
|
55 |
+
# Gradio interface
|
56 |
interface = gr.Interface(
|
57 |
+
fn=predict_employee_status,
|
58 |
inputs=[
|
59 |
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
|
60 |
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
|