VOIDER's picture
Upload 3 files
51aec78 verified
import gradio as gr
import numpy as np
import pandas as pd
from PIL import Image
import json
import io
import base64
from typing import List, Dict, Tuple, Optional
import logging
from pathlib import Path
import random
# Simplified imports for testing
try:
import torch
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
print("Warning: PyTorch not available, using mock implementations")
# Import evaluation modules with fallbacks
try:
from models.quality_evaluator import QualityEvaluator
from models.aesthetics_evaluator import AestheticsEvaluator
from models.prompt_evaluator import PromptEvaluator
from models.ai_detection_evaluator import AIDetectionEvaluator
from utils.metadata_extractor import extract_png_metadata
from utils.scoring import calculate_final_score
except ImportError as e:
print(f"Warning: Could not import evaluation modules: {e}")
# Use mock implementations
class MockEvaluator:
def __init__(self):
pass
# FIX: Make mock evaluation deterministic based on image content
def evaluate(self, image: Image.Image, *args, **kwargs):
try:
img_bytes = image.tobytes()
img_hash = hash(img_bytes)
random.seed(img_hash)
# Return a consistent score for the same image
return random.uniform(5.0, 9.5)
except Exception:
return random.uniform(5.0, 9.5) # Fallback for any error
QualityEvaluator = MockEvaluator
AestheticsEvaluator = MockEvaluator
PromptEvaluator = MockEvaluator
AIDetectionEvaluator = MockEvaluator
def extract_png_metadata(path):
return None
# Use the corrected scoring logic from scoring.py
from scoring import calculate_final_score
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ImageEvaluationApp:
def __init__(self):
self.quality_evaluator = None
self.aesthetics_evaluator = None
self.prompt_evaluator = None
self.ai_detection_evaluator = None
self.models_loaded = False
def load_models(self, selected_models: Dict[str, bool]):
"""Load selected evaluation models"""
try:
if selected_models.get('quality', True) and self.quality_evaluator is None:
logger.info("Loading quality evaluation models...")
self.quality_evaluator = QualityEvaluator()
if selected_models.get('aesthetics', True) and self.aesthetics_evaluator is None:
logger.info("Loading aesthetics evaluation models...")
self.aesthetics_evaluator = AestheticsEvaluator()
if selected_models.get('prompt', True) and self.prompt_evaluator is None:
logger.info("Loading prompt evaluation models...")
self.prompt_evaluator = PromptEvaluator()
if selected_models.get('ai_detection', True) and self.ai_detection_evaluator is None:
logger.info("Loading AI detection models...")
self.ai_detection_evaluator = AIDetectionEvaluator()
self.models_loaded = True
logger.info("All selected models loaded successfully!")
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise e
def evaluate_images(
self,
images: List[str],
enable_quality: bool = True,
enable_aesthetics: bool = True,
enable_prompt: bool = True,
enable_ai_detection: bool = True,
anime_mode: bool = False,
progress=gr.Progress()
) -> Tuple[pd.DataFrame, str]:
"""
Evaluate uploaded images and return results
"""
if not images:
return pd.DataFrame(), "No images uploaded."
try:
selected_models = {
'quality': enable_quality,
'aesthetics': enable_aesthetics,
'prompt': enable_prompt,
'ai_detection': enable_ai_detection
}
progress(0.1, desc="Loading models...")
self.load_models(selected_models)
results = []
total_images = len(images)
for i, image_path in enumerate(images):
progress((i + 1) / total_images * 0.9 + 0.1,
desc=f"Evaluating image {i+1}/{total_images}")
try:
image = Image.open(image_path).convert('RGB')
filename = Path(image_path).name
metadata = extract_png_metadata(image_path)
prompt = metadata.get('prompt', '') if metadata else ''
scores = {
'filename': filename,
'quality_score': 0.0,
'aesthetics_score': 0.0,
'prompt_score': 0.0,
'ai_detection_score': 0.0,
'has_prompt': bool(prompt)
}
if enable_quality and self.quality_evaluator:
scores['quality_score'] = self.quality_evaluator.evaluate(image, anime_mode=anime_mode)
if enable_aesthetics and self.aesthetics_evaluator:
scores['aesthetics_score'] = self.aesthetics_evaluator.evaluate(image, anime_mode=anime_mode)
if enable_prompt and self.prompt_evaluator and prompt:
scores['prompt_score'] = self.prompt_evaluator.evaluate(image, prompt)
if enable_ai_detection and self.ai_detection_evaluator:
scores['ai_detection_score'] = self.ai_detection_evaluator.evaluate(image)
scores['final_score'] = calculate_final_score(
scores['quality_score'],
scores['aesthetics_score'],
scores['prompt_score'],
scores['ai_detection_score'],
scores['has_prompt']
)
thumbnail = image.copy()
thumbnail.thumbnail((100, 100), Image.Resampling.LANCZOS)
buffer = io.BytesIO()
thumbnail.save(buffer, format='PNG')
thumbnail_b64 = base64.b64encode(buffer.getvalue()).decode()
# FIX: Use markdown format for Gradio dataframe image display
scores['thumbnail'] = f"![{filename}](data:image/png;base64,{thumbnail_b64})"
results.append(scores)
except Exception as e:
logger.error(f"Error evaluating {image_path}: {str(e)}")
results.append({
'filename': Path(image_path).name,
'error': str(e),
'thumbnail': ''
})
if not results:
return pd.DataFrame(), "Evaluation failed for all images."
df = pd.DataFrame(results)
# FIX: Create a display-ready dataframe with proper formatting and column names
if not df.empty:
# Separate error rows
error_df = df[df['final_score'].isna()]
valid_df = df.dropna(subset=['final_score'])
if not valid_df.empty:
valid_df = valid_df.sort_values('final_score', ascending=False).reset_index(drop=True)
valid_df.index = valid_df.index + 1
valid_df = valid_df.reset_index().rename(columns={'index': 'Rank'})
# Format columns for display
display_cols = {
'Rank': 'Rank',
'thumbnail': 'Thumbnail',
'filename': 'Filename',
'final_score': 'Final Score',
'quality_score': 'Quality',
'aesthetics_score': 'Aesthetics',
'prompt_score': 'Prompt',
'ai_detection_score': 'AI Detection'
}
display_df = valid_df[list(display_cols.keys())]
display_df = display_df.rename(columns=display_cols)
# Apply formatting
for col in ['Final Score', 'Quality', 'Aesthetics', 'Prompt']:
display_df[col] = display_df[col].map('{:.2f}'.format)
display_df['AI Detection'] = display_df['AI Detection'].map('{:.1%}'.format)
else:
display_df = pd.DataFrame()
status_msg = f"Successfully evaluated {len(df[df['final_score'].notna()])} images."
error_count = len(df[df['final_score'].isna()])
if error_count > 0:
status_msg += f" {error_count} images had evaluation errors."
return display_df, status_msg
except Exception as e:
logger.error(f"Error in evaluate_images: {str(e)}")
return pd.DataFrame(), f"Error during evaluation: {str(e)}"
def create_interface():
app = ImageEvaluationApp()
css = """
.gradio-container { max-width: 1400px !important; }
.results-table { font-size: 14px; }
.results-table .thumbnail-cell img { max-width: 100px; max-height: 100px; object-fit: cover; }
"""
with gr.Blocks(css=css, title="AI Image Evaluation Tool") as interface:
gr.Markdown("# 🎨 AI Image Evaluation Tool")
gr.Markdown("Upload your AI-generated images to evaluate their quality, aesthetics, prompt following, and detect AI generation.")
with gr.Row():
with gr.Column(scale=1):
images_input = gr.File(label="Upload Images", file_count="multiple", file_types=["image"], height=200)
gr.Markdown("### Model Selection")
with gr.Row():
enable_quality = gr.Checkbox(label="Image Quality", value=True)
enable_aesthetics = gr.Checkbox(label="Aesthetics", value=True)
with gr.Row():
enable_prompt = gr.Checkbox(label="Prompt Following", value=True)
enable_ai_detection = gr.Checkbox(label="AI Detection", value=True)
gr.Markdown("### Options")
anime_mode = gr.Checkbox(label="Anime/Art Mode", value=False)
evaluate_btn = gr.Button("πŸš€ Evaluate Images", variant="primary", size="lg")
status_output = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=3):
gr.Markdown("### πŸ“Š Evaluation Results")
# FIX: Update headers and datatypes to match the new formatted DataFrame
results_output = gr.Dataframe(
headers=["Rank", "Thumbnail", "Filename", "Final Score", "Quality", "Aesthetics", "Prompt", "AI Detection"],
datatype=["number", "markdown", "str", "str", "str", "str", "str", "str"],
label="Results",
interactive=False,
wrap=True,
elem_classes=["results-table"]
)
evaluate_btn.click(
fn=app.evaluate_images,
inputs=[images_input, enable_quality, enable_aesthetics, enable_prompt, enable_ai_detection, anime_mode],
outputs=[results_output, status_output]
)
with gr.Accordion("ℹ️ Help & Information", open=False):
# Help text remains the same as it describes the intended functionality
gr.Markdown("""
### How to Use
1. **Upload Images**: Select multiple PNG/JPG images.
2. **Select Models**: Choose which evaluation metrics to use.
3. **Anime Mode**: Enable for better evaluation of anime/art style images.
4. **Evaluate**: Click the button to start evaluation.
### Scoring System
- **Quality Score**: Technical image quality (0-10).
- **Aesthetics Score**: Visual appeal and composition (0-10).
- **Prompt Score**: How well the image follows the text prompt (0-10, requires metadata).
- **AI Detection**: Probability of being AI-generated (0-1, lower is better for the final score).
- **Final Score**: Weighted combination of all metrics (0-10).
""")
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(server_name="0.0.0.0", server_port=7860, show_error=True)