Spaces:
Sleeping
Sleeping
File size: 13,264 Bytes
83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 83b7522 51aec78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
import numpy as np
import pandas as pd
from PIL import Image
import json
import io
import base64
from typing import List, Dict, Tuple, Optional
import logging
from pathlib import Path
import random
# Simplified imports for testing
try:
import torch
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
print("Warning: PyTorch not available, using mock implementations")
# Import evaluation modules with fallbacks
try:
from models.quality_evaluator import QualityEvaluator
from models.aesthetics_evaluator import AestheticsEvaluator
from models.prompt_evaluator import PromptEvaluator
from models.ai_detection_evaluator import AIDetectionEvaluator
from utils.metadata_extractor import extract_png_metadata
from utils.scoring import calculate_final_score
except ImportError as e:
print(f"Warning: Could not import evaluation modules: {e}")
# Use mock implementations
class MockEvaluator:
def __init__(self):
pass
# FIX: Make mock evaluation deterministic based on image content
def evaluate(self, image: Image.Image, *args, **kwargs):
try:
img_bytes = image.tobytes()
img_hash = hash(img_bytes)
random.seed(img_hash)
# Return a consistent score for the same image
return random.uniform(5.0, 9.5)
except Exception:
return random.uniform(5.0, 9.5) # Fallback for any error
QualityEvaluator = MockEvaluator
AestheticsEvaluator = MockEvaluator
PromptEvaluator = MockEvaluator
AIDetectionEvaluator = MockEvaluator
def extract_png_metadata(path):
return None
# Use the corrected scoring logic from scoring.py
from scoring import calculate_final_score
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ImageEvaluationApp:
def __init__(self):
self.quality_evaluator = None
self.aesthetics_evaluator = None
self.prompt_evaluator = None
self.ai_detection_evaluator = None
self.models_loaded = False
def load_models(self, selected_models: Dict[str, bool]):
"""Load selected evaluation models"""
try:
if selected_models.get('quality', True) and self.quality_evaluator is None:
logger.info("Loading quality evaluation models...")
self.quality_evaluator = QualityEvaluator()
if selected_models.get('aesthetics', True) and self.aesthetics_evaluator is None:
logger.info("Loading aesthetics evaluation models...")
self.aesthetics_evaluator = AestheticsEvaluator()
if selected_models.get('prompt', True) and self.prompt_evaluator is None:
logger.info("Loading prompt evaluation models...")
self.prompt_evaluator = PromptEvaluator()
if selected_models.get('ai_detection', True) and self.ai_detection_evaluator is None:
logger.info("Loading AI detection models...")
self.ai_detection_evaluator = AIDetectionEvaluator()
self.models_loaded = True
logger.info("All selected models loaded successfully!")
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise e
def evaluate_images(
self,
images: List[str],
enable_quality: bool = True,
enable_aesthetics: bool = True,
enable_prompt: bool = True,
enable_ai_detection: bool = True,
anime_mode: bool = False,
progress=gr.Progress()
) -> Tuple[pd.DataFrame, str]:
"""
Evaluate uploaded images and return results
"""
if not images:
return pd.DataFrame(), "No images uploaded."
try:
selected_models = {
'quality': enable_quality,
'aesthetics': enable_aesthetics,
'prompt': enable_prompt,
'ai_detection': enable_ai_detection
}
progress(0.1, desc="Loading models...")
self.load_models(selected_models)
results = []
total_images = len(images)
for i, image_path in enumerate(images):
progress((i + 1) / total_images * 0.9 + 0.1,
desc=f"Evaluating image {i+1}/{total_images}")
try:
image = Image.open(image_path).convert('RGB')
filename = Path(image_path).name
metadata = extract_png_metadata(image_path)
prompt = metadata.get('prompt', '') if metadata else ''
scores = {
'filename': filename,
'quality_score': 0.0,
'aesthetics_score': 0.0,
'prompt_score': 0.0,
'ai_detection_score': 0.0,
'has_prompt': bool(prompt)
}
if enable_quality and self.quality_evaluator:
scores['quality_score'] = self.quality_evaluator.evaluate(image, anime_mode=anime_mode)
if enable_aesthetics and self.aesthetics_evaluator:
scores['aesthetics_score'] = self.aesthetics_evaluator.evaluate(image, anime_mode=anime_mode)
if enable_prompt and self.prompt_evaluator and prompt:
scores['prompt_score'] = self.prompt_evaluator.evaluate(image, prompt)
if enable_ai_detection and self.ai_detection_evaluator:
scores['ai_detection_score'] = self.ai_detection_evaluator.evaluate(image)
scores['final_score'] = calculate_final_score(
scores['quality_score'],
scores['aesthetics_score'],
scores['prompt_score'],
scores['ai_detection_score'],
scores['has_prompt']
)
thumbnail = image.copy()
thumbnail.thumbnail((100, 100), Image.Resampling.LANCZOS)
buffer = io.BytesIO()
thumbnail.save(buffer, format='PNG')
thumbnail_b64 = base64.b64encode(buffer.getvalue()).decode()
# FIX: Use markdown format for Gradio dataframe image display
scores['thumbnail'] = f""
results.append(scores)
except Exception as e:
logger.error(f"Error evaluating {image_path}: {str(e)}")
results.append({
'filename': Path(image_path).name,
'error': str(e),
'thumbnail': ''
})
if not results:
return pd.DataFrame(), "Evaluation failed for all images."
df = pd.DataFrame(results)
# FIX: Create a display-ready dataframe with proper formatting and column names
if not df.empty:
# Separate error rows
error_df = df[df['final_score'].isna()]
valid_df = df.dropna(subset=['final_score'])
if not valid_df.empty:
valid_df = valid_df.sort_values('final_score', ascending=False).reset_index(drop=True)
valid_df.index = valid_df.index + 1
valid_df = valid_df.reset_index().rename(columns={'index': 'Rank'})
# Format columns for display
display_cols = {
'Rank': 'Rank',
'thumbnail': 'Thumbnail',
'filename': 'Filename',
'final_score': 'Final Score',
'quality_score': 'Quality',
'aesthetics_score': 'Aesthetics',
'prompt_score': 'Prompt',
'ai_detection_score': 'AI Detection'
}
display_df = valid_df[list(display_cols.keys())]
display_df = display_df.rename(columns=display_cols)
# Apply formatting
for col in ['Final Score', 'Quality', 'Aesthetics', 'Prompt']:
display_df[col] = display_df[col].map('{:.2f}'.format)
display_df['AI Detection'] = display_df['AI Detection'].map('{:.1%}'.format)
else:
display_df = pd.DataFrame()
status_msg = f"Successfully evaluated {len(df[df['final_score'].notna()])} images."
error_count = len(df[df['final_score'].isna()])
if error_count > 0:
status_msg += f" {error_count} images had evaluation errors."
return display_df, status_msg
except Exception as e:
logger.error(f"Error in evaluate_images: {str(e)}")
return pd.DataFrame(), f"Error during evaluation: {str(e)}"
def create_interface():
app = ImageEvaluationApp()
css = """
.gradio-container { max-width: 1400px !important; }
.results-table { font-size: 14px; }
.results-table .thumbnail-cell img { max-width: 100px; max-height: 100px; object-fit: cover; }
"""
with gr.Blocks(css=css, title="AI Image Evaluation Tool") as interface:
gr.Markdown("# π¨ AI Image Evaluation Tool")
gr.Markdown("Upload your AI-generated images to evaluate their quality, aesthetics, prompt following, and detect AI generation.")
with gr.Row():
with gr.Column(scale=1):
images_input = gr.File(label="Upload Images", file_count="multiple", file_types=["image"], height=200)
gr.Markdown("### Model Selection")
with gr.Row():
enable_quality = gr.Checkbox(label="Image Quality", value=True)
enable_aesthetics = gr.Checkbox(label="Aesthetics", value=True)
with gr.Row():
enable_prompt = gr.Checkbox(label="Prompt Following", value=True)
enable_ai_detection = gr.Checkbox(label="AI Detection", value=True)
gr.Markdown("### Options")
anime_mode = gr.Checkbox(label="Anime/Art Mode", value=False)
evaluate_btn = gr.Button("π Evaluate Images", variant="primary", size="lg")
status_output = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=3):
gr.Markdown("### π Evaluation Results")
# FIX: Update headers and datatypes to match the new formatted DataFrame
results_output = gr.Dataframe(
headers=["Rank", "Thumbnail", "Filename", "Final Score", "Quality", "Aesthetics", "Prompt", "AI Detection"],
datatype=["number", "markdown", "str", "str", "str", "str", "str", "str"],
label="Results",
interactive=False,
wrap=True,
elem_classes=["results-table"]
)
evaluate_btn.click(
fn=app.evaluate_images,
inputs=[images_input, enable_quality, enable_aesthetics, enable_prompt, enable_ai_detection, anime_mode],
outputs=[results_output, status_output]
)
with gr.Accordion("βΉοΈ Help & Information", open=False):
# Help text remains the same as it describes the intended functionality
gr.Markdown("""
### How to Use
1. **Upload Images**: Select multiple PNG/JPG images.
2. **Select Models**: Choose which evaluation metrics to use.
3. **Anime Mode**: Enable for better evaluation of anime/art style images.
4. **Evaluate**: Click the button to start evaluation.
### Scoring System
- **Quality Score**: Technical image quality (0-10).
- **Aesthetics Score**: Visual appeal and composition (0-10).
- **Prompt Score**: How well the image follows the text prompt (0-10, requires metadata).
- **AI Detection**: Probability of being AI-generated (0-1, lower is better for the final score).
- **Final Score**: Weighted combination of all metrics (0-10).
""")
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(server_name="0.0.0.0", server_port=7860, show_error=True) |