Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +85 -139
- requirements.txt +13 -14
- scoring.py +77 -0
app.py
CHANGED
@@ -8,8 +8,6 @@ import base64
|
|
8 |
from typing import List, Dict, Tuple, Optional
|
9 |
import logging
|
10 |
from pathlib import Path
|
11 |
-
import tempfile
|
12 |
-
import os
|
13 |
import random
|
14 |
|
15 |
# Simplified imports for testing
|
@@ -34,9 +32,17 @@ except ImportError as e:
|
|
34 |
class MockEvaluator:
|
35 |
def __init__(self):
|
36 |
pass
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
QualityEvaluator = MockEvaluator
|
41 |
AestheticsEvaluator = MockEvaluator
|
42 |
PromptEvaluator = MockEvaluator
|
@@ -45,11 +51,8 @@ except ImportError as e:
|
|
45 |
def extract_png_metadata(path):
|
46 |
return None
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
return (quality * 0.25 + aesthetics * 0.35 + prompt * 0.25 + (1-ai_detection) * 0.15)
|
51 |
-
else:
|
52 |
-
return (quality * 0.375 + aesthetics * 0.475 + (1-ai_detection) * 0.15)
|
53 |
|
54 |
# Configure logging
|
55 |
logging.basicConfig(level=logging.INFO)
|
@@ -101,24 +104,11 @@ class ImageEvaluationApp:
|
|
101 |
) -> Tuple[pd.DataFrame, str]:
|
102 |
"""
|
103 |
Evaluate uploaded images and return results
|
104 |
-
|
105 |
-
Args:
|
106 |
-
images: List of image file paths
|
107 |
-
enable_quality: Whether to evaluate image quality
|
108 |
-
enable_aesthetics: Whether to evaluate aesthetics
|
109 |
-
enable_prompt: Whether to evaluate prompt following
|
110 |
-
enable_ai_detection: Whether to detect AI generation
|
111 |
-
anime_mode: Whether to use anime-specific models
|
112 |
-
progress: Gradio progress tracker
|
113 |
-
|
114 |
-
Returns:
|
115 |
-
Tuple of (results_dataframe, status_message)
|
116 |
"""
|
117 |
if not images:
|
118 |
return pd.DataFrame(), "No images uploaded."
|
119 |
|
120 |
try:
|
121 |
-
# Load models based on selection
|
122 |
selected_models = {
|
123 |
'quality': enable_quality,
|
124 |
'aesthetics': enable_aesthetics,
|
@@ -137,42 +127,33 @@ class ImageEvaluationApp:
|
|
137 |
desc=f"Evaluating image {i+1}/{total_images}")
|
138 |
|
139 |
try:
|
140 |
-
# Load image
|
141 |
image = Image.open(image_path).convert('RGB')
|
142 |
filename = Path(image_path).name
|
143 |
|
144 |
-
# Extract metadata
|
145 |
metadata = extract_png_metadata(image_path)
|
146 |
prompt = metadata.get('prompt', '') if metadata else ''
|
147 |
|
148 |
-
# Initialize scores
|
149 |
scores = {
|
150 |
'filename': filename,
|
151 |
'quality_score': 0.0,
|
152 |
'aesthetics_score': 0.0,
|
153 |
'prompt_score': 0.0,
|
154 |
'ai_detection_score': 0.0,
|
155 |
-
'has_prompt': bool(prompt)
|
156 |
-
'prompt_text': prompt[:100] + '...' if len(prompt) > 100 else prompt
|
157 |
}
|
158 |
|
159 |
-
# Evaluate quality
|
160 |
if enable_quality and self.quality_evaluator:
|
161 |
-
scores['quality_score'] = self.quality_evaluator.evaluate(image, anime_mode)
|
162 |
|
163 |
-
# Evaluate aesthetics
|
164 |
if enable_aesthetics and self.aesthetics_evaluator:
|
165 |
-
scores['aesthetics_score'] = self.aesthetics_evaluator.evaluate(image, anime_mode)
|
166 |
|
167 |
-
# Evaluate prompt following (only if prompt available)
|
168 |
if enable_prompt and self.prompt_evaluator and prompt:
|
169 |
scores['prompt_score'] = self.prompt_evaluator.evaluate(image, prompt)
|
170 |
|
171 |
-
# Evaluate AI detection
|
172 |
if enable_ai_detection and self.ai_detection_evaluator:
|
173 |
scores['ai_detection_score'] = self.ai_detection_evaluator.evaluate(image)
|
174 |
|
175 |
-
# Calculate final score
|
176 |
scores['final_score'] = calculate_final_score(
|
177 |
scores['quality_score'],
|
178 |
scores['aesthetics_score'],
|
@@ -181,177 +162,142 @@ class ImageEvaluationApp:
|
|
181 |
scores['has_prompt']
|
182 |
)
|
183 |
|
184 |
-
# Create thumbnail for display
|
185 |
thumbnail = image.copy()
|
186 |
-
thumbnail.thumbnail((
|
187 |
-
|
188 |
-
# Convert thumbnail to base64 for display
|
189 |
buffer = io.BytesIO()
|
190 |
thumbnail.save(buffer, format='PNG')
|
191 |
thumbnail_b64 = base64.b64encode(buffer.getvalue()).decode()
|
192 |
-
|
|
|
193 |
|
194 |
results.append(scores)
|
195 |
|
196 |
except Exception as e:
|
197 |
logger.error(f"Error evaluating {image_path}: {str(e)}")
|
198 |
-
# Add error entry
|
199 |
results.append({
|
200 |
'filename': Path(image_path).name,
|
201 |
-
'
|
202 |
-
'
|
203 |
-
'prompt_score': 0.0,
|
204 |
-
'ai_detection_score': 0.0,
|
205 |
-
'final_score': 0.0,
|
206 |
-
'has_prompt': False,
|
207 |
-
'prompt_text': f"Error: {str(e)}",
|
208 |
-
'thumbnail': ""
|
209 |
})
|
210 |
|
211 |
-
|
|
|
|
|
212 |
df = pd.DataFrame(results)
|
213 |
-
if not df.empty:
|
214 |
-
df = df.sort_values('final_score', ascending=False).reset_index(drop=True)
|
215 |
-
df.index = df.index + 1 # Start ranking from 1
|
216 |
-
df.index.name = 'Rank'
|
217 |
-
|
218 |
-
progress(1.0, desc="Evaluation complete!")
|
219 |
|
220 |
-
|
221 |
-
if
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
status_msg += f" {error_count} images had evaluation errors."
|
224 |
|
225 |
-
return
|
226 |
|
227 |
except Exception as e:
|
228 |
logger.error(f"Error in evaluate_images: {str(e)}")
|
229 |
return pd.DataFrame(), f"Error during evaluation: {str(e)}"
|
230 |
|
231 |
def create_interface():
|
232 |
-
"""Create and configure the Gradio interface"""
|
233 |
-
|
234 |
app = ImageEvaluationApp()
|
235 |
|
236 |
-
# Custom CSS for better styling
|
237 |
css = """
|
238 |
-
.gradio-container {
|
239 |
-
|
240 |
-
}
|
241 |
-
.results-table {
|
242 |
-
font-size: 12px;
|
243 |
-
}
|
244 |
-
.thumbnail-cell img {
|
245 |
-
max-width: 100px;
|
246 |
-
max-height: 100px;
|
247 |
-
object-fit: cover;
|
248 |
-
}
|
249 |
"""
|
250 |
|
251 |
with gr.Blocks(css=css, title="AI Image Evaluation Tool") as interface:
|
252 |
-
gr.Markdown(""
|
253 |
-
|
254 |
-
|
255 |
-
Upload your AI-generated images to evaluate their quality, aesthetics, prompt following, and detect AI generation.
|
256 |
-
Supports realistic, anime, and art styles with multiple SOTA models.
|
257 |
-
""")
|
258 |
|
259 |
with gr.Row():
|
260 |
with gr.Column(scale=1):
|
261 |
-
|
262 |
-
images_input = gr.File(
|
263 |
-
label="Upload Images",
|
264 |
-
file_count="multiple",
|
265 |
-
file_types=["image"],
|
266 |
-
height=200
|
267 |
-
)
|
268 |
|
269 |
-
# Model selection
|
270 |
gr.Markdown("### Model Selection")
|
271 |
with gr.Row():
|
272 |
enable_quality = gr.Checkbox(label="Image Quality", value=True)
|
273 |
enable_aesthetics = gr.Checkbox(label="Aesthetics", value=True)
|
274 |
-
|
275 |
with gr.Row():
|
276 |
enable_prompt = gr.Checkbox(label="Prompt Following", value=True)
|
277 |
enable_ai_detection = gr.Checkbox(label="AI Detection", value=True)
|
278 |
|
279 |
-
# Additional options
|
280 |
gr.Markdown("### Options")
|
281 |
anime_mode = gr.Checkbox(label="Anime/Art Mode", value=False)
|
282 |
|
283 |
-
# Evaluate button
|
284 |
evaluate_btn = gr.Button("🚀 Evaluate Images", variant="primary", size="lg")
|
285 |
-
|
286 |
-
# Status
|
287 |
status_output = gr.Textbox(label="Status", interactive=False)
|
288 |
|
289 |
-
with gr.Column(scale=
|
290 |
-
# Results display
|
291 |
gr.Markdown("### 📊 Evaluation Results")
|
|
|
292 |
results_output = gr.Dataframe(
|
293 |
-
headers=["Rank", "
|
294 |
-
datatype=["number", "
|
295 |
label="Results",
|
296 |
interactive=False,
|
297 |
wrap=True,
|
298 |
elem_classes=["results-table"]
|
299 |
)
|
300 |
|
301 |
-
# Event handlers
|
302 |
evaluate_btn.click(
|
303 |
fn=app.evaluate_images,
|
304 |
-
inputs=[
|
305 |
-
|
306 |
-
enable_quality,
|
307 |
-
enable_aesthetics,
|
308 |
-
enable_prompt,
|
309 |
-
enable_ai_detection,
|
310 |
-
anime_mode
|
311 |
-
],
|
312 |
-
outputs=[results_output, status_output],
|
313 |
-
show_progress=True
|
314 |
)
|
315 |
|
316 |
-
# Examples and help
|
317 |
with gr.Accordion("ℹ️ Help & Information", open=False):
|
|
|
318 |
gr.Markdown("""
|
319 |
### How to Use
|
320 |
-
1. **Upload Images**: Select multiple PNG/JPG images
|
321 |
-
2. **Select Models**: Choose which evaluation metrics to use
|
322 |
-
3. **Anime Mode**: Enable for better evaluation of anime/art style images
|
323 |
-
4. **Evaluate**: Click the button to start evaluation
|
324 |
|
325 |
### Scoring System
|
326 |
-
- **Quality Score**: Technical image quality (0-10)
|
327 |
-
- **Aesthetics Score**: Visual appeal and composition (0-10)
|
328 |
-
- **Prompt Score**: How well the image follows the text prompt (0-10, requires metadata)
|
329 |
-
- **AI Detection**: Probability of being AI-generated (0-1, lower is better)
|
330 |
-
- **Final Score**: Weighted combination of all metrics (0-10)
|
331 |
-
|
332 |
-
### Supported Formats
|
333 |
-
- PNG files with A1111/ComfyUI metadata (for prompt evaluation)
|
334 |
-
- JPG, PNG, WebP images (for other evaluations)
|
335 |
-
- Batch processing of 10-100+ images
|
336 |
-
|
337 |
-
### Models Used
|
338 |
-
- **Quality**: LAR-IQA, DGIQA
|
339 |
-
- **Aesthetics**: UNIAA, MUSIQ
|
340 |
-
- **Prompt Following**: CLIP, BLIP-2
|
341 |
-
- **AI Detection**: Sentry-Image, Custom ensemble
|
342 |
""")
|
343 |
|
344 |
return interface
|
345 |
|
346 |
if __name__ == "__main__":
|
347 |
-
# Create the interface
|
348 |
interface = create_interface()
|
349 |
-
|
350 |
-
# Launch the app
|
351 |
-
interface.launch(
|
352 |
-
server_name="0.0.0.0",
|
353 |
-
server_port=7860,
|
354 |
-
share=False,
|
355 |
-
show_error=True
|
356 |
-
)
|
357 |
-
|
|
|
8 |
from typing import List, Dict, Tuple, Optional
|
9 |
import logging
|
10 |
from pathlib import Path
|
|
|
|
|
11 |
import random
|
12 |
|
13 |
# Simplified imports for testing
|
|
|
32 |
class MockEvaluator:
|
33 |
def __init__(self):
|
34 |
pass
|
35 |
+
# FIX: Make mock evaluation deterministic based on image content
|
36 |
+
def evaluate(self, image: Image.Image, *args, **kwargs):
|
37 |
+
try:
|
38 |
+
img_bytes = image.tobytes()
|
39 |
+
img_hash = hash(img_bytes)
|
40 |
+
random.seed(img_hash)
|
41 |
+
# Return a consistent score for the same image
|
42 |
+
return random.uniform(5.0, 9.5)
|
43 |
+
except Exception:
|
44 |
+
return random.uniform(5.0, 9.5) # Fallback for any error
|
45 |
+
|
46 |
QualityEvaluator = MockEvaluator
|
47 |
AestheticsEvaluator = MockEvaluator
|
48 |
PromptEvaluator = MockEvaluator
|
|
|
51 |
def extract_png_metadata(path):
|
52 |
return None
|
53 |
|
54 |
+
# Use the corrected scoring logic from scoring.py
|
55 |
+
from scoring import calculate_final_score
|
|
|
|
|
|
|
56 |
|
57 |
# Configure logging
|
58 |
logging.basicConfig(level=logging.INFO)
|
|
|
104 |
) -> Tuple[pd.DataFrame, str]:
|
105 |
"""
|
106 |
Evaluate uploaded images and return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
"""
|
108 |
if not images:
|
109 |
return pd.DataFrame(), "No images uploaded."
|
110 |
|
111 |
try:
|
|
|
112 |
selected_models = {
|
113 |
'quality': enable_quality,
|
114 |
'aesthetics': enable_aesthetics,
|
|
|
127 |
desc=f"Evaluating image {i+1}/{total_images}")
|
128 |
|
129 |
try:
|
|
|
130 |
image = Image.open(image_path).convert('RGB')
|
131 |
filename = Path(image_path).name
|
132 |
|
|
|
133 |
metadata = extract_png_metadata(image_path)
|
134 |
prompt = metadata.get('prompt', '') if metadata else ''
|
135 |
|
|
|
136 |
scores = {
|
137 |
'filename': filename,
|
138 |
'quality_score': 0.0,
|
139 |
'aesthetics_score': 0.0,
|
140 |
'prompt_score': 0.0,
|
141 |
'ai_detection_score': 0.0,
|
142 |
+
'has_prompt': bool(prompt)
|
|
|
143 |
}
|
144 |
|
|
|
145 |
if enable_quality and self.quality_evaluator:
|
146 |
+
scores['quality_score'] = self.quality_evaluator.evaluate(image, anime_mode=anime_mode)
|
147 |
|
|
|
148 |
if enable_aesthetics and self.aesthetics_evaluator:
|
149 |
+
scores['aesthetics_score'] = self.aesthetics_evaluator.evaluate(image, anime_mode=anime_mode)
|
150 |
|
|
|
151 |
if enable_prompt and self.prompt_evaluator and prompt:
|
152 |
scores['prompt_score'] = self.prompt_evaluator.evaluate(image, prompt)
|
153 |
|
|
|
154 |
if enable_ai_detection and self.ai_detection_evaluator:
|
155 |
scores['ai_detection_score'] = self.ai_detection_evaluator.evaluate(image)
|
156 |
|
|
|
157 |
scores['final_score'] = calculate_final_score(
|
158 |
scores['quality_score'],
|
159 |
scores['aesthetics_score'],
|
|
|
162 |
scores['has_prompt']
|
163 |
)
|
164 |
|
|
|
165 |
thumbnail = image.copy()
|
166 |
+
thumbnail.thumbnail((100, 100), Image.Resampling.LANCZOS)
|
|
|
|
|
167 |
buffer = io.BytesIO()
|
168 |
thumbnail.save(buffer, format='PNG')
|
169 |
thumbnail_b64 = base64.b64encode(buffer.getvalue()).decode()
|
170 |
+
# FIX: Use markdown format for Gradio dataframe image display
|
171 |
+
scores['thumbnail'] = f""
|
172 |
|
173 |
results.append(scores)
|
174 |
|
175 |
except Exception as e:
|
176 |
logger.error(f"Error evaluating {image_path}: {str(e)}")
|
|
|
177 |
results.append({
|
178 |
'filename': Path(image_path).name,
|
179 |
+
'error': str(e),
|
180 |
+
'thumbnail': ''
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
})
|
182 |
|
183 |
+
if not results:
|
184 |
+
return pd.DataFrame(), "Evaluation failed for all images."
|
185 |
+
|
186 |
df = pd.DataFrame(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
# FIX: Create a display-ready dataframe with proper formatting and column names
|
189 |
+
if not df.empty:
|
190 |
+
# Separate error rows
|
191 |
+
error_df = df[df['final_score'].isna()]
|
192 |
+
valid_df = df.dropna(subset=['final_score'])
|
193 |
+
|
194 |
+
if not valid_df.empty:
|
195 |
+
valid_df = valid_df.sort_values('final_score', ascending=False).reset_index(drop=True)
|
196 |
+
valid_df.index = valid_df.index + 1
|
197 |
+
valid_df = valid_df.reset_index().rename(columns={'index': 'Rank'})
|
198 |
+
|
199 |
+
# Format columns for display
|
200 |
+
display_cols = {
|
201 |
+
'Rank': 'Rank',
|
202 |
+
'thumbnail': 'Thumbnail',
|
203 |
+
'filename': 'Filename',
|
204 |
+
'final_score': 'Final Score',
|
205 |
+
'quality_score': 'Quality',
|
206 |
+
'aesthetics_score': 'Aesthetics',
|
207 |
+
'prompt_score': 'Prompt',
|
208 |
+
'ai_detection_score': 'AI Detection'
|
209 |
+
}
|
210 |
+
|
211 |
+
display_df = valid_df[list(display_cols.keys())]
|
212 |
+
display_df = display_df.rename(columns=display_cols)
|
213 |
+
|
214 |
+
# Apply formatting
|
215 |
+
for col in ['Final Score', 'Quality', 'Aesthetics', 'Prompt']:
|
216 |
+
display_df[col] = display_df[col].map('{:.2f}'.format)
|
217 |
+
display_df['AI Detection'] = display_df['AI Detection'].map('{:.1%}'.format)
|
218 |
+
|
219 |
+
else:
|
220 |
+
display_df = pd.DataFrame()
|
221 |
+
|
222 |
+
status_msg = f"Successfully evaluated {len(df[df['final_score'].notna()])} images."
|
223 |
+
error_count = len(df[df['final_score'].isna()])
|
224 |
+
if error_count > 0:
|
225 |
status_msg += f" {error_count} images had evaluation errors."
|
226 |
|
227 |
+
return display_df, status_msg
|
228 |
|
229 |
except Exception as e:
|
230 |
logger.error(f"Error in evaluate_images: {str(e)}")
|
231 |
return pd.DataFrame(), f"Error during evaluation: {str(e)}"
|
232 |
|
233 |
def create_interface():
|
|
|
|
|
234 |
app = ImageEvaluationApp()
|
235 |
|
|
|
236 |
css = """
|
237 |
+
.gradio-container { max-width: 1400px !important; }
|
238 |
+
.results-table { font-size: 14px; }
|
239 |
+
.results-table .thumbnail-cell img { max-width: 100px; max-height: 100px; object-fit: cover; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
"""
|
241 |
|
242 |
with gr.Blocks(css=css, title="AI Image Evaluation Tool") as interface:
|
243 |
+
gr.Markdown("# 🎨 AI Image Evaluation Tool")
|
244 |
+
gr.Markdown("Upload your AI-generated images to evaluate their quality, aesthetics, prompt following, and detect AI generation.")
|
|
|
|
|
|
|
|
|
245 |
|
246 |
with gr.Row():
|
247 |
with gr.Column(scale=1):
|
248 |
+
images_input = gr.File(label="Upload Images", file_count="multiple", file_types=["image"], height=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
|
|
250 |
gr.Markdown("### Model Selection")
|
251 |
with gr.Row():
|
252 |
enable_quality = gr.Checkbox(label="Image Quality", value=True)
|
253 |
enable_aesthetics = gr.Checkbox(label="Aesthetics", value=True)
|
|
|
254 |
with gr.Row():
|
255 |
enable_prompt = gr.Checkbox(label="Prompt Following", value=True)
|
256 |
enable_ai_detection = gr.Checkbox(label="AI Detection", value=True)
|
257 |
|
|
|
258 |
gr.Markdown("### Options")
|
259 |
anime_mode = gr.Checkbox(label="Anime/Art Mode", value=False)
|
260 |
|
|
|
261 |
evaluate_btn = gr.Button("🚀 Evaluate Images", variant="primary", size="lg")
|
|
|
|
|
262 |
status_output = gr.Textbox(label="Status", interactive=False)
|
263 |
|
264 |
+
with gr.Column(scale=3):
|
|
|
265 |
gr.Markdown("### 📊 Evaluation Results")
|
266 |
+
# FIX: Update headers and datatypes to match the new formatted DataFrame
|
267 |
results_output = gr.Dataframe(
|
268 |
+
headers=["Rank", "Thumbnail", "Filename", "Final Score", "Quality", "Aesthetics", "Prompt", "AI Detection"],
|
269 |
+
datatype=["number", "markdown", "str", "str", "str", "str", "str", "str"],
|
270 |
label="Results",
|
271 |
interactive=False,
|
272 |
wrap=True,
|
273 |
elem_classes=["results-table"]
|
274 |
)
|
275 |
|
|
|
276 |
evaluate_btn.click(
|
277 |
fn=app.evaluate_images,
|
278 |
+
inputs=[images_input, enable_quality, enable_aesthetics, enable_prompt, enable_ai_detection, anime_mode],
|
279 |
+
outputs=[results_output, status_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
)
|
281 |
|
|
|
282 |
with gr.Accordion("ℹ️ Help & Information", open=False):
|
283 |
+
# Help text remains the same as it describes the intended functionality
|
284 |
gr.Markdown("""
|
285 |
### How to Use
|
286 |
+
1. **Upload Images**: Select multiple PNG/JPG images.
|
287 |
+
2. **Select Models**: Choose which evaluation metrics to use.
|
288 |
+
3. **Anime Mode**: Enable for better evaluation of anime/art style images.
|
289 |
+
4. **Evaluate**: Click the button to start evaluation.
|
290 |
|
291 |
### Scoring System
|
292 |
+
- **Quality Score**: Technical image quality (0-10).
|
293 |
+
- **Aesthetics Score**: Visual appeal and composition (0-10).
|
294 |
+
- **Prompt Score**: How well the image follows the text prompt (0-10, requires metadata).
|
295 |
+
- **AI Detection**: Probability of being AI-generated (0-1, lower is better for the final score).
|
296 |
+
- **Final Score**: Weighted combination of all metrics (0-10).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
""")
|
298 |
|
299 |
return interface
|
300 |
|
301 |
if __name__ == "__main__":
|
|
|
302 |
interface = create_interface()
|
303 |
+
interface.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -2,18 +2,17 @@ gradio>=4.0.0
|
|
2 |
Pillow>=9.0.0
|
3 |
numpy>=1.21.0
|
4 |
pandas>=1.3.0
|
5 |
-
scipy>=1.9.0
|
6 |
-
|
7 |
-
# Optional dependencies for full functionality
|
8 |
-
# Uncomment these for production deployment with real models
|
9 |
-
# torch>=2.0.0
|
10 |
-
# torchvision>=0.15.0
|
11 |
-
# transformers>=4.30.0
|
12 |
-
# opencv-python>=4.5.0
|
13 |
-
# scikit-image>=0.19.0
|
14 |
-
# huggingface-hub>=0.15.0
|
15 |
-
# accelerate>=0.20.0
|
16 |
-
# timm>=0.9.0
|
17 |
-
# sentence-transformers>=2.2.0
|
18 |
-
# git+https://github.com/openai/CLIP.git
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
Pillow>=9.0.0
|
3 |
numpy>=1.21.0
|
4 |
pandas>=1.3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
Optional dependencies for full functionality
|
7 |
+
Uncomment these for production deployment with real models
|
8 |
+
torch>=2.0.0
|
9 |
+
torchvision>=0.15.0
|
10 |
+
transformers>=4.30.0
|
11 |
+
opencv-python>=4.5.0
|
12 |
+
scikit-image>=0.19.0
|
13 |
+
huggingface-hub>=0.15.0
|
14 |
+
accelerate>=0.20.0
|
15 |
+
timm>=0.9.0
|
16 |
+
sentence-transformers>=2.2.0
|
17 |
+
git+https://github.com/openai/CLIP.git
|
18 |
+
scipy>=1.9.0
|
scoring.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import logging
|
3 |
+
|
4 |
+
logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
def calculate_final_score(
|
7 |
+
quality_score: float,
|
8 |
+
aesthetics_score: float,
|
9 |
+
prompt_score: float,
|
10 |
+
ai_detection_score: float,
|
11 |
+
has_prompt: bool = True
|
12 |
+
) -> float:
|
13 |
+
"""
|
14 |
+
Calculate weighted composite score for image evaluation.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
quality_score: Technical image quality (0-10)
|
18 |
+
aesthetics_score: Visual appeal score (0-10)
|
19 |
+
prompt_score: Prompt adherence score (0-10)
|
20 |
+
ai_detection_score: AI generation probability (0-1)
|
21 |
+
has_prompt: Whether prompt metadata is available
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Final composite score (0-10)
|
25 |
+
"""
|
26 |
+
try:
|
27 |
+
# Validate and clamp input scores
|
28 |
+
quality_score = max(0.0, min(10.0, quality_score))
|
29 |
+
aesthetics_score = max(0.0, min(10.0, aesthetics_score))
|
30 |
+
prompt_score = max(0.0, min(10.0, prompt_score))
|
31 |
+
ai_detection_score = max(0.0, min(1.0, ai_detection_score))
|
32 |
+
|
33 |
+
# FIX: Invert and scale the AI detection score to a 0-10 range
|
34 |
+
# A low AI detection probability (good) results in a high score.
|
35 |
+
inverted_ai_score = (1 - ai_detection_score) * 10
|
36 |
+
|
37 |
+
if has_prompt:
|
38 |
+
# Standard weights when prompt is available
|
39 |
+
weights = {
|
40 |
+
'quality': 0.25, # 25% - Technical quality
|
41 |
+
'aesthetics': 0.35, # 35% - Visual appeal (highest weight)
|
42 |
+
'prompt': 0.25, # 25% - Prompt following
|
43 |
+
'ai_detection': 0.15 # 15% - Authenticity (inverted detection score)
|
44 |
+
}
|
45 |
+
|
46 |
+
# FIX: Correctly calculate the weighted score. The sum of weights is 1.0.
|
47 |
+
score = (
|
48 |
+
quality_score * weights['quality'] +
|
49 |
+
aesthetics_score * weights['aesthetics'] +
|
50 |
+
prompt_score * weights['prompt'] +
|
51 |
+
inverted_ai_score * weights['ai_detection']
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
# Redistribute prompt weight when no prompt available
|
55 |
+
weights = {
|
56 |
+
'quality': 0.375, # 25% + 12.5% from prompt
|
57 |
+
'aesthetics': 0.475, # 35% + 12.5% from prompt
|
58 |
+
'ai_detection': 0.15 # 15% - Authenticity
|
59 |
+
}
|
60 |
+
|
61 |
+
# FIX: Correctly calculate the weighted score without prompt. Sum of weights is 1.0.
|
62 |
+
score = (
|
63 |
+
quality_score * weights['quality'] +
|
64 |
+
aesthetics_score * weights['aesthetics'] +
|
65 |
+
inverted_ai_score * weights['ai_detection']
|
66 |
+
)
|
67 |
+
|
68 |
+
# Ensure final score is within the valid 0-10 range
|
69 |
+
final_score = max(0.0, min(10.0, score))
|
70 |
+
|
71 |
+
logger.debug(f"Score calculation - Final: {final_score:.2f}")
|
72 |
+
|
73 |
+
return final_score
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Error calculating final score: {str(e)}")
|
77 |
+
return 0.0 # Return 0.0 on error to clearly indicate failure
|