import gradio as gr import numpy as np import pandas as pd from PIL import Image import json import io import base64 from typing import List, Dict, Tuple, Optional import logging from pathlib import Path import random # Simplified imports for testing try: import torch TORCH_AVAILABLE = True except ImportError: TORCH_AVAILABLE = False print("Warning: PyTorch not available, using mock implementations") # Import evaluation modules with fallbacks try: from models.quality_evaluator import QualityEvaluator from models.aesthetics_evaluator import AestheticsEvaluator from models.prompt_evaluator import PromptEvaluator from models.ai_detection_evaluator import AIDetectionEvaluator from utils.metadata_extractor import extract_png_metadata from utils.scoring import calculate_final_score except ImportError as e: print(f"Warning: Could not import evaluation modules: {e}") # Use mock implementations class MockEvaluator: def __init__(self): pass # FIX: Make mock evaluation deterministic based on image content def evaluate(self, image: Image.Image, *args, **kwargs): try: img_bytes = image.tobytes() img_hash = hash(img_bytes) random.seed(img_hash) # Return a consistent score for the same image return random.uniform(5.0, 9.5) except Exception: return random.uniform(5.0, 9.5) # Fallback for any error QualityEvaluator = MockEvaluator AestheticsEvaluator = MockEvaluator PromptEvaluator = MockEvaluator AIDetectionEvaluator = MockEvaluator def extract_png_metadata(path): return None # Use the corrected scoring logic from scoring.py from scoring import calculate_final_score # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class ImageEvaluationApp: def __init__(self): self.quality_evaluator = None self.aesthetics_evaluator = None self.prompt_evaluator = None self.ai_detection_evaluator = None self.models_loaded = False def load_models(self, selected_models: Dict[str, bool]): """Load selected evaluation models""" try: if selected_models.get('quality', True) and self.quality_evaluator is None: logger.info("Loading quality evaluation models...") self.quality_evaluator = QualityEvaluator() if selected_models.get('aesthetics', True) and self.aesthetics_evaluator is None: logger.info("Loading aesthetics evaluation models...") self.aesthetics_evaluator = AestheticsEvaluator() if selected_models.get('prompt', True) and self.prompt_evaluator is None: logger.info("Loading prompt evaluation models...") self.prompt_evaluator = PromptEvaluator() if selected_models.get('ai_detection', True) and self.ai_detection_evaluator is None: logger.info("Loading AI detection models...") self.ai_detection_evaluator = AIDetectionEvaluator() self.models_loaded = True logger.info("All selected models loaded successfully!") except Exception as e: logger.error(f"Error loading models: {str(e)}") raise e def evaluate_images( self, images: List[str], enable_quality: bool = True, enable_aesthetics: bool = True, enable_prompt: bool = True, enable_ai_detection: bool = True, anime_mode: bool = False, progress=gr.Progress() ) -> Tuple[pd.DataFrame, str]: """ Evaluate uploaded images and return results """ if not images: return pd.DataFrame(), "No images uploaded." try: selected_models = { 'quality': enable_quality, 'aesthetics': enable_aesthetics, 'prompt': enable_prompt, 'ai_detection': enable_ai_detection } progress(0.1, desc="Loading models...") self.load_models(selected_models) results = [] total_images = len(images) for i, image_path in enumerate(images): progress((i + 1) / total_images * 0.9 + 0.1, desc=f"Evaluating image {i+1}/{total_images}") try: image = Image.open(image_path).convert('RGB') filename = Path(image_path).name metadata = extract_png_metadata(image_path) prompt = metadata.get('prompt', '') if metadata else '' scores = { 'filename': filename, 'quality_score': 0.0, 'aesthetics_score': 0.0, 'prompt_score': 0.0, 'ai_detection_score': 0.0, 'has_prompt': bool(prompt) } if enable_quality and self.quality_evaluator: scores['quality_score'] = self.quality_evaluator.evaluate(image, anime_mode=anime_mode) if enable_aesthetics and self.aesthetics_evaluator: scores['aesthetics_score'] = self.aesthetics_evaluator.evaluate(image, anime_mode=anime_mode) if enable_prompt and self.prompt_evaluator and prompt: scores['prompt_score'] = self.prompt_evaluator.evaluate(image, prompt) if enable_ai_detection and self.ai_detection_evaluator: scores['ai_detection_score'] = self.ai_detection_evaluator.evaluate(image) scores['final_score'] = calculate_final_score( scores['quality_score'], scores['aesthetics_score'], scores['prompt_score'], scores['ai_detection_score'], scores['has_prompt'] ) thumbnail = image.copy() thumbnail.thumbnail((100, 100), Image.Resampling.LANCZOS) buffer = io.BytesIO() thumbnail.save(buffer, format='PNG') thumbnail_b64 = base64.b64encode(buffer.getvalue()).decode() # FIX: Use markdown format for Gradio dataframe image display scores['thumbnail'] = f"![{filename}](data:image/png;base64,{thumbnail_b64})" results.append(scores) except Exception as e: logger.error(f"Error evaluating {image_path}: {str(e)}") results.append({ 'filename': Path(image_path).name, 'error': str(e), 'thumbnail': '' }) if not results: return pd.DataFrame(), "Evaluation failed for all images." df = pd.DataFrame(results) # FIX: Create a display-ready dataframe with proper formatting and column names if not df.empty: # Separate error rows error_df = df[df['final_score'].isna()] valid_df = df.dropna(subset=['final_score']) if not valid_df.empty: valid_df = valid_df.sort_values('final_score', ascending=False).reset_index(drop=True) valid_df.index = valid_df.index + 1 valid_df = valid_df.reset_index().rename(columns={'index': 'Rank'}) # Format columns for display display_cols = { 'Rank': 'Rank', 'thumbnail': 'Thumbnail', 'filename': 'Filename', 'final_score': 'Final Score', 'quality_score': 'Quality', 'aesthetics_score': 'Aesthetics', 'prompt_score': 'Prompt', 'ai_detection_score': 'AI Detection' } display_df = valid_df[list(display_cols.keys())] display_df = display_df.rename(columns=display_cols) # Apply formatting for col in ['Final Score', 'Quality', 'Aesthetics', 'Prompt']: display_df[col] = display_df[col].map('{:.2f}'.format) display_df['AI Detection'] = display_df['AI Detection'].map('{:.1%}'.format) else: display_df = pd.DataFrame() status_msg = f"Successfully evaluated {len(df[df['final_score'].notna()])} images." error_count = len(df[df['final_score'].isna()]) if error_count > 0: status_msg += f" {error_count} images had evaluation errors." return display_df, status_msg except Exception as e: logger.error(f"Error in evaluate_images: {str(e)}") return pd.DataFrame(), f"Error during evaluation: {str(e)}" def create_interface(): app = ImageEvaluationApp() css = """ .gradio-container { max-width: 1400px !important; } .results-table { font-size: 14px; } .results-table .thumbnail-cell img { max-width: 100px; max-height: 100px; object-fit: cover; } """ with gr.Blocks(css=css, title="AI Image Evaluation Tool") as interface: gr.Markdown("# 🎨 AI Image Evaluation Tool") gr.Markdown("Upload your AI-generated images to evaluate their quality, aesthetics, prompt following, and detect AI generation.") with gr.Row(): with gr.Column(scale=1): images_input = gr.File(label="Upload Images", file_count="multiple", file_types=["image"], height=200) gr.Markdown("### Model Selection") with gr.Row(): enable_quality = gr.Checkbox(label="Image Quality", value=True) enable_aesthetics = gr.Checkbox(label="Aesthetics", value=True) with gr.Row(): enable_prompt = gr.Checkbox(label="Prompt Following", value=True) enable_ai_detection = gr.Checkbox(label="AI Detection", value=True) gr.Markdown("### Options") anime_mode = gr.Checkbox(label="Anime/Art Mode", value=False) evaluate_btn = gr.Button("🚀 Evaluate Images", variant="primary", size="lg") status_output = gr.Textbox(label="Status", interactive=False) with gr.Column(scale=3): gr.Markdown("### 📊 Evaluation Results") # FIX: Update headers and datatypes to match the new formatted DataFrame results_output = gr.Dataframe( headers=["Rank", "Thumbnail", "Filename", "Final Score", "Quality", "Aesthetics", "Prompt", "AI Detection"], datatype=["number", "markdown", "str", "str", "str", "str", "str", "str"], label="Results", interactive=False, wrap=True, elem_classes=["results-table"] ) evaluate_btn.click( fn=app.evaluate_images, inputs=[images_input, enable_quality, enable_aesthetics, enable_prompt, enable_ai_detection, anime_mode], outputs=[results_output, status_output] ) with gr.Accordion("â„šī¸ Help & Information", open=False): # Help text remains the same as it describes the intended functionality gr.Markdown(""" ### How to Use 1. **Upload Images**: Select multiple PNG/JPG images. 2. **Select Models**: Choose which evaluation metrics to use. 3. **Anime Mode**: Enable for better evaluation of anime/art style images. 4. **Evaluate**: Click the button to start evaluation. ### Scoring System - **Quality Score**: Technical image quality (0-10). - **Aesthetics Score**: Visual appeal and composition (0-10). - **Prompt Score**: How well the image follows the text prompt (0-10, requires metadata). - **AI Detection**: Probability of being AI-generated (0-1, lower is better for the final score). - **Final Score**: Weighted combination of all metrics (0-10). """) return interface if __name__ == "__main__": interface = create_interface() interface.launch(server_name="0.0.0.0", server_port=7860, show_error=True)