Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,506 Bytes
dfa0bd7 2b1e4b7 d27df0e 96070b5 bc928c9 2c099cb 6efc05e 2c099cb ea6037b 6efc05e ea6037b cbda16b ea6037b 2b1e4b7 cbda16b 6efc05e cbda16b ea6037b 2134133 cbda16b 2c099cb cbda16b 2134133 4efedce ea6037b 2134133 cbda16b 2134133 ea6037b 2b1e4b7 6efc05e cbda16b 5ad5437 cbda16b 5ad5437 6efc05e 5ad5437 cbda16b 6efc05e 2134133 cbda16b 6efc05e 2134133 cbda16b 5ad5437 cbda16b 5ad5437 2134133 5ad5437 cbda16b 6efc05e 5ad5437 cbda16b 5ad5437 6efc05e 5ad5437 6efc05e 2134133 5ad5437 6efc05e cbda16b 2134133 6efc05e ea6037b 2c099cb 6efc05e cbda16b 6efc05e 2c099cb cbda16b 2c099cb 2134133 6efc05e 2c099cb 6efc05e 2c099cb 2134133 6efc05e ea6037b 6efc05e cbda16b 6efc05e 2134133 6efc05e 2134133 6efc05e 2134133 6efc05e 5a47f9e ea6037b 2c099cb 2134133 cbda16b 2134133 2c099cb 6efc05e ea6037b 6efc05e 2134133 cbda16b 2134133 6efc05e 2134133 6efc05e 2134133 6efc05e 2134133 6efc05e 2c099cb 2134133 2c099cb ea6037b 6efc05e cbda16b 6efc05e 2134133 6efc05e 5ad5437 2134133 cbda16b 6efc05e ea6037b cbda16b 6efc05e ea6037b 2134133 cbda16b 2c099cb 6efc05e 2c099cb cbda16b 2c099cb ea6037b cbda16b 6efc05e ea6037b 6efc05e ea6037b 2c099cb ea6037b 2c099cb 2134133 cbda16b 2134133 6efc05e 2134133 6efc05e 2134133 2c099cb ea6037b cbda16b ea6037b bc928c9 ea6037b 2c099cb 6efc05e cbda16b 6efc05e 2c099cb 6efc05e 2134133 6efc05e 2134133 cbda16b 6efc05e 2134133 6efc05e 2134133 ea6037b cbda16b ea6037b 2c099cb ea6037b 6efc05e cbda16b 6efc05e 2134133 2c099cb 6efc05e 2134133 6efc05e 2134133 2c099cb 2134133 6efc05e 2c099cb 2134133 ea6037b 6efc05e ea6037b 2c099cb 6efc05e 2134133 cbda16b 2134133 6efc05e cbda16b 6efc05e 2134133 cbda16b 6efc05e 2134133 cbda16b 2134133 cbda16b 6efc05e 2134133 cbda16b 2134133 6efc05e 2134133 cbda16b 6efc05e cbda16b ea6037b 2134133 6efc05e cbda16b 6efc05e 2134133 6efc05e ea6037b 2134133 96070b5 cbda16b 2134133 cbda16b 2134133 5a47f9e 74b6cd5 6efc05e ea6037b cbda16b ea6037b 74b6cd5 cbda16b 2134133 2c099cb cbda16b 2c099cb cbda16b 2c099cb cbda16b 2134133 bc928c9 cbda16b 2134133 4efedce 2c099cb 6efc05e 4efedce ea6037b 5a47f9e ea6037b cbda16b ea6037b 6efc05e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import json
import gradio as gr
import spaces
import wbgtopic
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer
from sklearn.cluster import KMeans
import torch
# Set up GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize WBGDocTopic
clf = wbgtopic.WBGDocTopic(device=device)
# Download NLTK data if necessary
try:
nltk.download('punkt', quiet=True)
nltk.download('vader_lexicon', quiet=True)
except Exception as e:
print(f"NLTK data download error: {e}")
# Sample Text
SAMPLE_TEXT = """
The three reportedly discussed the Stargate Project, a large-scale AI initiative led by OpenAI, SoftBank, and U.S. software giant Oracle. The project aims to invest $500 billion over the next four years in building new AI infrastructure in the U.S. The U.S. government has shown a strong commitment to the initiative, with President Donald Trump personally announcing it at the White House the day after his inauguration last month. If Samsung participates, the project will lead to a Korea-U.S.-Japan AI alliance.
The AI sector requires massive investments and extensive resources, including advanced models, high-performance AI chips to power the models, and large-scale data centers to operate them. Nvidia and TSMC currently dominate the AI sector, but a partnership between Samsung, SoftBank, and OpenAI could pave the way for a competitive alternative.
"""
def safe_process(func):
"""
Decorator to log exceptions and return None to prevent Gradio interface crashes.
"""
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Error in {func.__name__}: {str(e)}")
return None
return wrapper
@safe_process
def parse_wbg_results(raw_output):
"""
Standardize the output of wbgtopic.WBGDocTopic's suggest_topics() into a list of dictionaries with keys:
'label', 'score_mean', and 'score_std'.
Example return structure:
[
{
"label": "Agriculture",
"score_mean": 0.32,
"score_std": 0.05
},
...
]
"""
print(">>> DEBUG: raw_output =", raw_output)
# If raw_output is a dict (instead of a list), convert it to the expected list format.
if isinstance(raw_output, dict):
parsed_list = []
for k, v in raw_output.items():
parsed_list.append({
"label": k,
"score_mean": float(v) if v is not None else 0.0,
"score_std": 0.0
})
return parsed_list
# If the result is empty, return an empty list.
if not raw_output:
return []
# Assume raw_output is a list; get the first item.
first_item = raw_output[0]
# Case 1: Already in the form of a dictionary with a 'label' key.
if isinstance(first_item, dict) and ("label" in first_item):
parsed_list = []
for item in raw_output:
label = item.get("label", "")
score_mean = item.get("score_mean", None)
score_std = item.get("score_std", None)
# If only 'score' exists, use it as score_mean.
if score_mean is None and "score" in item:
score_mean = float(item["score"])
if score_mean is None:
score_mean = 0.0
if score_std is None:
score_std = 0.0
parsed_list.append({
"label": label,
"score_mean": float(score_mean),
"score_std": float(score_std)
})
return parsed_list
# Case 2: Dictionary with topic names as keys and scores as values.
if isinstance(first_item, dict):
merged = {}
for d in raw_output:
for k, v in d.items():
merged[k] = v # Overwrite duplicates with the last occurrence.
parsed_list = []
for label, val in merged.items():
parsed_list.append({
"label": label,
"score_mean": float(val),
"score_std": 0.0
})
return parsed_list
# If the structure is unexpected, return an empty list.
return []
@safe_process
def analyze_text_sections(text):
"""
Split the text into multiple sections (e.g., every 3 sentences) and analyze topics for each section using suggest_topics().
Returns a list of topic lists for each section.
"""
sentences = sent_tokenize(text)
# Group every 3 sentences into one section.
sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]
section_topics = []
for section in sections:
raw_sec = clf.suggest_topics(section)
parsed_sec = parse_wbg_results(raw_sec)
section_topics.append(parsed_sec)
return section_topics
@safe_process
def calculate_topic_correlations(topic_dicts):
"""
Calculate correlation among topic score_means from a list of topic dictionaries.
Note: Ideally, correlations should be calculated across different documents, but here we use topics from a single text.
"""
if len(topic_dicts) < 2:
return np.array([[1.0]]), ["Insufficient topics"]
labels = [d['label'] for d in topic_dicts]
scores = [d['score_mean'] for d in topic_dicts]
if len(scores) < 2:
return np.array([[1.0]]), ["Insufficient topics"]
corr_matrix = np.corrcoef(scores)
return corr_matrix, labels
@safe_process
def perform_sentiment_analysis(text):
"""
Perform sentiment analysis on each sentence using NLTK's VADER.
Returns a pandas DataFrame of sentiment scores.
"""
sia = SentimentIntensityAnalyzer()
sents = sent_tokenize(text)
results = [sia.polarity_scores(s) for s in sents]
return pd.DataFrame(results)
@safe_process
def create_topic_clusters(topic_dicts):
"""
Perform KMeans clustering on topics based on score_mean and score_std.
If there are fewer than 3 topics, assign all to cluster 0.
"""
if len(topic_dicts) < 3:
return [0] * len(topic_dicts)
X = []
for t in topic_dicts:
X.append([t['score_mean'], t.get('score_std', 0.0)])
X = np.array(X)
if X.shape[0] < 3:
return [0] * X.shape[0]
kmeans = KMeans(n_clusters=min(3, X.shape[0]), random_state=42)
clusters = kmeans.fit_predict(X)
return clusters.tolist()
@safe_process
def create_main_charts(topic_dicts):
"""
Generate a bar chart and radar chart.
'score_mean' is assumed to be in the range 0-1 and is converted to a percentage.
"""
if not topic_dicts:
return go.Figure(), go.Figure()
labels = [t['label'] for t in topic_dicts]
scores = [t['score_mean'] * 100 for t in topic_dicts]
# Bar chart
bar_fig = go.Figure(
data=[go.Bar(x=labels, y=scores, marker_color='rgb(55, 83, 109)')]
)
bar_fig.update_layout(
title='Topic Analysis Results',
xaxis_title='Topics',
yaxis_title='Relevance (%)',
template='plotly_white',
height=500,
)
# Radar chart
radar_fig = go.Figure()
radar_fig.add_trace(go.Scatterpolar(
r=scores,
theta=labels,
fill='toself',
name='Topic Distribution'
))
radar_fig.update_layout(
title='Topic Radar Chart',
template='plotly_white',
height=500,
polar=dict(radialaxis=dict(visible=True)),
showlegend=False
)
return bar_fig, radar_fig
@safe_process
def create_correlation_heatmap(corr_matrix, labels):
"""
Visualize the correlation matrix as a heatmap.
If data is insufficient, display a message.
"""
if corr_matrix.ndim == 0:
corr_matrix = np.array([[corr_matrix]])
if corr_matrix.shape == (1, 1):
fig = go.Figure()
fig.add_annotation(text="Not enough topics for correlation", showarrow=False)
return fig
fig = go.Figure(data=go.Heatmap(
z=corr_matrix,
x=labels,
y=labels,
colorscale='Viridis'
))
fig.update_layout(
title='Topic Correlation Heatmap',
height=500,
template='plotly_white'
)
return fig
@safe_process
def create_topic_evolution(section_topics):
"""
Create a line chart showing topic score evolution across different sections.
section_topics: List of lists containing topic dictionaries for each section.
"""
fig = go.Figure()
if not section_topics or len(section_topics) == 0:
return fig
if not section_topics[0]:
return fig
# Use topics from the first section as reference.
for topic_dict in section_topics[0]:
label = topic_dict['label']
score_list = []
for sec_list in section_topics:
match = next((d for d in sec_list if d['label'] == label), None)
if match:
score_list.append(match['score_mean'])
else:
score_list.append(0.0)
fig.add_trace(go.Scatter(
x=list(range(len(section_topics))),
y=score_list,
name=label,
mode='lines+markers'
))
fig.update_layout(
title='Section-wise Topic Evolution',
xaxis_title='Section',
yaxis_title='Score Mean',
height=500,
template='plotly_white'
)
return fig
@safe_process
def create_confidence_gauge(topic_dicts):
"""
Display each topic's confidence as a gauge.
Confidence is calculated using a simple formula: (1 - score_std) * 100.
"""
if not topic_dicts:
return go.Figure()
fig = go.Figure()
num_topics = len(topic_dicts)
for i, t in enumerate(topic_dicts):
conf_val = 100.0 * (1.0 - t.get("score_std", 0.0))
fig.add_trace(go.Indicator(
mode="gauge+number",
value=conf_val,
title={'text': t['label']},
domain={'row': 0, 'column': i}
))
fig.update_layout(
grid={'rows': 1, 'columns': num_topics},
height=400,
template='plotly_white'
)
return fig
@spaces.GPU()
def process_all_analysis(text):
"""
Perform comprehensive analysis on the input text, including topic analysis, section analysis,
correlation, sentiment analysis, clustering, and generate corresponding JSON results and Plotly charts.
"""
try:
# 1) Analyze topics for the entire text.
raw_results = clf.suggest_topics(text)
all_topics = parse_wbg_results(raw_results)
# 2) Sort topics by score_mean in descending order and take the top 5.
sorted_topics = sorted(all_topics, key=lambda x: x['score_mean'], reverse=True)
top_topics = sorted_topics[:5]
# 3) Analyze topics by sections.
section_topics = analyze_text_sections(text)
# 4) Additional analyses (correlation, sentiment, clustering).
corr_matrix, corr_labels = calculate_topic_correlations(all_topics)
sentiments_df = perform_sentiment_analysis(text)
clusters = create_topic_clusters(all_topics)
# 5) Generate charts.
bar_chart, radar_chart = create_main_charts(top_topics)
heatmap = create_correlation_heatmap(corr_matrix, corr_labels)
evolution_chart = create_topic_evolution(section_topics)
gauge_chart = create_confidence_gauge(top_topics)
# 6) Return results as JSON and charts.
results = {
"top_topics": top_topics, # Top 5 topics.
"clusters": clusters, # Cluster results.
"sentiments": sentiments_df.to_dict(orient="records") # Sentiment analysis results.
}
return (
results, # JSON output.
bar_chart, # Plot 1: Topic Distribution (Bar Chart).
radar_chart, # Plot 2: Radar Chart.
heatmap, # Plot 3: Correlation Heatmap.
evolution_chart, # Plot 4: Section Topic Evolution.
gauge_chart, # Plot 5: Confidence Gauge.
go.Figure() # Plot 6: (Placeholder for Sentiment Analysis Chart).
)
except Exception as e:
print(f"Analysis error: {str(e)}")
empty_fig = go.Figure()
return (
{"error": str(e), "topics": []},
empty_fig,
empty_fig,
empty_fig,
empty_fig,
empty_fig,
empty_fig
)
######################################################
# Gradio UI Definition #
######################################################
with gr.Blocks(title="Advanced Document Topic Analyzer") as demo:
gr.Markdown("## Advanced Document Topic Analyzer")
gr.Markdown(
"Enter the text below and click **Start Analysis**. "
"The tool will analyze key topics, correlations, confidence gauges, sentiment analysis, and more."
)
with gr.Row():
text_input = gr.Textbox(
value=SAMPLE_TEXT,
label="Enter Text for Analysis",
lines=8
)
with gr.Row():
submit_btn = gr.Button("Start Analysis", variant="primary")
with gr.Tabs():
with gr.TabItem("Main Analysis"):
with gr.Row():
plot1 = gr.Plot(label="Topic Distribution (Bar Chart)")
plot2 = gr.Plot(label="Radar Chart")
with gr.TabItem("Detailed Analysis"):
with gr.Row():
plot3 = gr.Plot(label="Correlation Heatmap")
plot4 = gr.Plot(label="Section Topic Evolution")
with gr.TabItem("Confidence Analysis"):
plot5 = gr.Plot(label="Confidence Gauge")
with gr.TabItem("Sentiment Analysis"):
plot6 = gr.Plot(label="Sentiment Analysis Result")
with gr.Row():
output_json = gr.JSON(label="Detailed Analysis Result (JSON)")
submit_btn.click(
fn=process_all_analysis,
inputs=[text_input],
outputs=[output_json, plot1, plot2, plot3, plot4, plot5, plot6]
)
if __name__ == "__main__":
demo.queue(max_size=1)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # Set to True if you need a public shareable link.
debug=True
)
|