File size: 14,506 Bytes
dfa0bd7
2b1e4b7
d27df0e
96070b5
bc928c9
2c099cb
 
 
6efc05e
2c099cb
 
ea6037b
6efc05e
ea6037b
cbda16b
ea6037b
2b1e4b7
cbda16b
6efc05e
 
cbda16b
ea6037b
 
 
2134133
cbda16b
2c099cb
cbda16b
2134133
 
 
 
4efedce
ea6037b
2134133
cbda16b
2134133
ea6037b
 
 
 
 
 
 
2b1e4b7
6efc05e
 
 
cbda16b
 
5ad5437
cbda16b
5ad5437
 
 
 
 
 
 
 
6efc05e
5ad5437
 
cbda16b
 
 
 
 
 
 
 
 
 
 
 
6efc05e
 
2134133
cbda16b
6efc05e
2134133
cbda16b
5ad5437
 
 
 
 
 
 
cbda16b
5ad5437
 
 
 
 
 
 
2134133
5ad5437
 
 
 
 
 
 
cbda16b
6efc05e
5ad5437
 
 
cbda16b
5ad5437
6efc05e
5ad5437
6efc05e
2134133
 
5ad5437
6efc05e
 
 
cbda16b
2134133
6efc05e
ea6037b
2c099cb
6efc05e
cbda16b
 
6efc05e
2c099cb
cbda16b
2c099cb
2134133
6efc05e
2c099cb
6efc05e
 
 
2c099cb
2134133
6efc05e
ea6037b
6efc05e
 
cbda16b
 
6efc05e
 
 
2134133
6efc05e
2134133
 
6efc05e
 
2134133
6efc05e
 
5a47f9e
ea6037b
2c099cb
2134133
cbda16b
 
2134133
2c099cb
6efc05e
 
 
 
ea6037b
6efc05e
2134133
cbda16b
 
2134133
6efc05e
2134133
 
6efc05e
 
 
2134133
6efc05e
 
2134133
 
6efc05e
2c099cb
2134133
2c099cb
ea6037b
6efc05e
 
cbda16b
 
6efc05e
 
 
2134133
6efc05e
5ad5437
2134133
cbda16b
6efc05e
 
 
ea6037b
cbda16b
 
 
6efc05e
 
ea6037b
2134133
cbda16b
2c099cb
 
6efc05e
 
2c099cb
cbda16b
2c099cb
ea6037b
cbda16b
6efc05e
ea6037b
6efc05e
 
ea6037b
2c099cb
 
ea6037b
2c099cb
2134133
cbda16b
 
2134133
6efc05e
 
2134133
 
6efc05e
 
 
2134133
2c099cb
 
 
 
 
 
ea6037b
cbda16b
ea6037b
 
 
bc928c9
 
ea6037b
2c099cb
6efc05e
cbda16b
 
6efc05e
2c099cb
6efc05e
 
2134133
6efc05e
 
2134133
cbda16b
6efc05e
 
 
 
 
 
 
 
 
2134133
6efc05e
 
 
 
 
 
2134133
ea6037b
cbda16b
 
 
ea6037b
 
 
2c099cb
 
ea6037b
6efc05e
 
cbda16b
 
6efc05e
 
 
2134133
2c099cb
6efc05e
2134133
6efc05e
2134133
2c099cb
 
2134133
6efc05e
 
2c099cb
2134133
ea6037b
6efc05e
ea6037b
 
 
2c099cb
 
6efc05e
 
2134133
cbda16b
 
2134133
6efc05e
cbda16b
6efc05e
2134133
 
cbda16b
6efc05e
 
2134133
cbda16b
2134133
 
cbda16b
6efc05e
 
 
2134133
cbda16b
2134133
6efc05e
 
 
2134133
cbda16b
6efc05e
cbda16b
 
 
ea6037b
2134133
6efc05e
cbda16b
 
 
 
 
 
 
6efc05e
2134133
6efc05e
 
 
 
 
 
 
 
 
 
 
 
ea6037b
2134133
 
 
96070b5
cbda16b
 
2134133
cbda16b
 
2134133
5a47f9e
74b6cd5
6efc05e
ea6037b
cbda16b
ea6037b
 
74b6cd5
cbda16b
2134133
2c099cb
cbda16b
2c099cb
cbda16b
 
 
2c099cb
cbda16b
 
 
 
 
 
2134133
bc928c9
cbda16b
2134133
4efedce
2c099cb
6efc05e
 
4efedce
 
ea6037b
5a47f9e
ea6037b
 
 
cbda16b
ea6037b
6efc05e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import json
import gradio as gr
import spaces
import wbgtopic
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer
from sklearn.cluster import KMeans
import torch

# Set up GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Initialize WBGDocTopic
clf = wbgtopic.WBGDocTopic(device=device)

# Download NLTK data if necessary
try:
    nltk.download('punkt', quiet=True)
    nltk.download('vader_lexicon', quiet=True)
except Exception as e:
    print(f"NLTK data download error: {e}")

# Sample Text
SAMPLE_TEXT = """
The three reportedly discussed the Stargate Project, a large-scale AI initiative led by OpenAI, SoftBank, and U.S. software giant Oracle. The project aims to invest $500 billion over the next four years in building new AI infrastructure in the U.S. The U.S. government has shown a strong commitment to the initiative, with President Donald Trump personally announcing it at the White House the day after his inauguration last month. If Samsung participates, the project will lead to a Korea-U.S.-Japan AI alliance.
The AI sector requires massive investments and extensive resources, including advanced models, high-performance AI chips to power the models, and large-scale data centers to operate them. Nvidia and TSMC currently dominate the AI sector, but a partnership between Samsung, SoftBank, and OpenAI could pave the way for a competitive alternative.
"""

def safe_process(func):
    """
    Decorator to log exceptions and return None to prevent Gradio interface crashes.
    """
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            print(f"Error in {func.__name__}: {str(e)}")
            return None
    return wrapper

@safe_process
def parse_wbg_results(raw_output):
    """
    Standardize the output of wbgtopic.WBGDocTopic's suggest_topics() into a list of dictionaries with keys:
    'label', 'score_mean', and 'score_std'.

    Example return structure:
    [
      {
        "label": "Agriculture",
        "score_mean": 0.32,
        "score_std": 0.05
      },
      ...
    ]
    """
    print(">>> DEBUG: raw_output =", raw_output)

    # If raw_output is a dict (instead of a list), convert it to the expected list format.
    if isinstance(raw_output, dict):
        parsed_list = []
        for k, v in raw_output.items():
            parsed_list.append({
                "label": k,
                "score_mean": float(v) if v is not None else 0.0,
                "score_std": 0.0
            })
        return parsed_list

    # If the result is empty, return an empty list.
    if not raw_output:
        return []

    # Assume raw_output is a list; get the first item.
    first_item = raw_output[0]

    # Case 1: Already in the form of a dictionary with a 'label' key.
    if isinstance(first_item, dict) and ("label" in first_item):
        parsed_list = []
        for item in raw_output:
            label = item.get("label", "")
            score_mean = item.get("score_mean", None)
            score_std = item.get("score_std", None)

            # If only 'score' exists, use it as score_mean.
            if score_mean is None and "score" in item:
                score_mean = float(item["score"])
            if score_mean is None:
                score_mean = 0.0

            if score_std is None:
                score_std = 0.0

            parsed_list.append({
                "label": label,
                "score_mean": float(score_mean),
                "score_std": float(score_std)
            })
        return parsed_list

    # Case 2: Dictionary with topic names as keys and scores as values.
    if isinstance(first_item, dict):
        merged = {}
        for d in raw_output:
            for k, v in d.items():
                merged[k] = v  # Overwrite duplicates with the last occurrence.

        parsed_list = []
        for label, val in merged.items():
            parsed_list.append({
                "label": label,
                "score_mean": float(val),
                "score_std": 0.0
            })
        return parsed_list

    # If the structure is unexpected, return an empty list.
    return []

@safe_process
def analyze_text_sections(text):
    """
    Split the text into multiple sections (e.g., every 3 sentences) and analyze topics for each section using suggest_topics().
    Returns a list of topic lists for each section.
    """
    sentences = sent_tokenize(text)
    # Group every 3 sentences into one section.
    sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]

    section_topics = []
    for section in sections:
        raw_sec = clf.suggest_topics(section)
        parsed_sec = parse_wbg_results(raw_sec)
        section_topics.append(parsed_sec)

    return section_topics

@safe_process
def calculate_topic_correlations(topic_dicts):
    """
    Calculate correlation among topic score_means from a list of topic dictionaries.
    Note: Ideally, correlations should be calculated across different documents, but here we use topics from a single text.
    """
    if len(topic_dicts) < 2:
        return np.array([[1.0]]), ["Insufficient topics"]

    labels = [d['label'] for d in topic_dicts]
    scores = [d['score_mean'] for d in topic_dicts]

    if len(scores) < 2:
        return np.array([[1.0]]), ["Insufficient topics"]

    corr_matrix = np.corrcoef(scores)
    return corr_matrix, labels

@safe_process
def perform_sentiment_analysis(text):
    """
    Perform sentiment analysis on each sentence using NLTK's VADER.
    Returns a pandas DataFrame of sentiment scores.
    """
    sia = SentimentIntensityAnalyzer()
    sents = sent_tokenize(text)
    results = [sia.polarity_scores(s) for s in sents]
    return pd.DataFrame(results)

@safe_process
def create_topic_clusters(topic_dicts):
    """
    Perform KMeans clustering on topics based on score_mean and score_std.
    If there are fewer than 3 topics, assign all to cluster 0.
    """
    if len(topic_dicts) < 3:
        return [0] * len(topic_dicts)

    X = []
    for t in topic_dicts:
        X.append([t['score_mean'], t.get('score_std', 0.0)])

    X = np.array(X)
    if X.shape[0] < 3:
        return [0] * X.shape[0]

    kmeans = KMeans(n_clusters=min(3, X.shape[0]), random_state=42)
    clusters = kmeans.fit_predict(X)
    return clusters.tolist()

@safe_process
def create_main_charts(topic_dicts):
    """
    Generate a bar chart and radar chart.
    'score_mean' is assumed to be in the range 0-1 and is converted to a percentage.
    """
    if not topic_dicts:
        return go.Figure(), go.Figure()

    labels = [t['label'] for t in topic_dicts]
    scores = [t['score_mean'] * 100 for t in topic_dicts]

    # Bar chart
    bar_fig = go.Figure(
        data=[go.Bar(x=labels, y=scores, marker_color='rgb(55, 83, 109)')]
    )
    bar_fig.update_layout(
        title='Topic Analysis Results',
        xaxis_title='Topics',
        yaxis_title='Relevance (%)',
        template='plotly_white',
        height=500,
    )

    # Radar chart
    radar_fig = go.Figure()
    radar_fig.add_trace(go.Scatterpolar(
        r=scores,
        theta=labels,
        fill='toself',
        name='Topic Distribution'
    ))
    radar_fig.update_layout(
        title='Topic Radar Chart',
        template='plotly_white',
        height=500,
        polar=dict(radialaxis=dict(visible=True)),
        showlegend=False
    )
    return bar_fig, radar_fig

@safe_process
def create_correlation_heatmap(corr_matrix, labels):
    """
    Visualize the correlation matrix as a heatmap.
    If data is insufficient, display a message.
    """
    if corr_matrix.ndim == 0:
        corr_matrix = np.array([[corr_matrix]])

    if corr_matrix.shape == (1, 1):
        fig = go.Figure()
        fig.add_annotation(text="Not enough topics for correlation", showarrow=False)
        return fig

    fig = go.Figure(data=go.Heatmap(
        z=corr_matrix,
        x=labels,
        y=labels,
        colorscale='Viridis'
    ))
    fig.update_layout(
        title='Topic Correlation Heatmap',
        height=500,
        template='plotly_white'
    )
    return fig

@safe_process
def create_topic_evolution(section_topics):
    """
    Create a line chart showing topic score evolution across different sections.
    section_topics: List of lists containing topic dictionaries for each section.
    """
    fig = go.Figure()
    if not section_topics or len(section_topics) == 0:
        return fig

    if not section_topics[0]:
        return fig

    # Use topics from the first section as reference.
    for topic_dict in section_topics[0]:
        label = topic_dict['label']
        score_list = []
        for sec_list in section_topics:
            match = next((d for d in sec_list if d['label'] == label), None)
            if match:
                score_list.append(match['score_mean'])
            else:
                score_list.append(0.0)

        fig.add_trace(go.Scatter(
            x=list(range(len(section_topics))),
            y=score_list,
            name=label,
            mode='lines+markers'
        ))

    fig.update_layout(
        title='Section-wise Topic Evolution',
        xaxis_title='Section',
        yaxis_title='Score Mean',
        height=500,
        template='plotly_white'
    )
    return fig

@safe_process
def create_confidence_gauge(topic_dicts):
    """
    Display each topic's confidence as a gauge.
    Confidence is calculated using a simple formula: (1 - score_std) * 100.
    """
    if not topic_dicts:
        return go.Figure()

    fig = go.Figure()
    num_topics = len(topic_dicts)

    for i, t in enumerate(topic_dicts):
        conf_val = 100.0 * (1.0 - t.get("score_std", 0.0))
        fig.add_trace(go.Indicator(
            mode="gauge+number",
            value=conf_val,
            title={'text': t['label']},
            domain={'row': 0, 'column': i}
        ))

    fig.update_layout(
        grid={'rows': 1, 'columns': num_topics},
        height=400,
        template='plotly_white'
    )
    return fig

@spaces.GPU()
def process_all_analysis(text):
    """
    Perform comprehensive analysis on the input text, including topic analysis, section analysis,
    correlation, sentiment analysis, clustering, and generate corresponding JSON results and Plotly charts.
    """
    try:
        # 1) Analyze topics for the entire text.
        raw_results = clf.suggest_topics(text)
        all_topics = parse_wbg_results(raw_results)

        # 2) Sort topics by score_mean in descending order and take the top 5.
        sorted_topics = sorted(all_topics, key=lambda x: x['score_mean'], reverse=True)
        top_topics = sorted_topics[:5]

        # 3) Analyze topics by sections.
        section_topics = analyze_text_sections(text)

        # 4) Additional analyses (correlation, sentiment, clustering).
        corr_matrix, corr_labels = calculate_topic_correlations(all_topics)
        sentiments_df = perform_sentiment_analysis(text)
        clusters = create_topic_clusters(all_topics)

        # 5) Generate charts.
        bar_chart, radar_chart = create_main_charts(top_topics)
        heatmap = create_correlation_heatmap(corr_matrix, corr_labels)
        evolution_chart = create_topic_evolution(section_topics)
        gauge_chart = create_confidence_gauge(top_topics)

        # 6) Return results as JSON and charts.
        results = {
            "top_topics": top_topics,                           # Top 5 topics.
            "clusters": clusters,                               # Cluster results.
            "sentiments": sentiments_df.to_dict(orient="records") # Sentiment analysis results.
        }

        return (
            results,          # JSON output.
            bar_chart,        # Plot 1: Topic Distribution (Bar Chart).
            radar_chart,      # Plot 2: Radar Chart.
            heatmap,          # Plot 3: Correlation Heatmap.
            evolution_chart,  # Plot 4: Section Topic Evolution.
            gauge_chart,      # Plot 5: Confidence Gauge.
            go.Figure()       # Plot 6: (Placeholder for Sentiment Analysis Chart).
        )

    except Exception as e:
        print(f"Analysis error: {str(e)}")
        empty_fig = go.Figure()
        return (
            {"error": str(e), "topics": []},
            empty_fig,
            empty_fig,
            empty_fig,
            empty_fig,
            empty_fig,
            empty_fig
        )

######################################################
#                Gradio UI Definition               #
######################################################

with gr.Blocks(title="Advanced Document Topic Analyzer") as demo:
    gr.Markdown("## Advanced Document Topic Analyzer")
    gr.Markdown(
        "Enter the text below and click **Start Analysis**. "
        "The tool will analyze key topics, correlations, confidence gauges, sentiment analysis, and more."
    )

    with gr.Row():
        text_input = gr.Textbox(
            value=SAMPLE_TEXT,
            label="Enter Text for Analysis",
            lines=8
        )
    with gr.Row():
        submit_btn = gr.Button("Start Analysis", variant="primary")

    with gr.Tabs():
        with gr.TabItem("Main Analysis"):
            with gr.Row():
                plot1 = gr.Plot(label="Topic Distribution (Bar Chart)")
                plot2 = gr.Plot(label="Radar Chart")
        with gr.TabItem("Detailed Analysis"):
            with gr.Row():
                plot3 = gr.Plot(label="Correlation Heatmap")
                plot4 = gr.Plot(label="Section Topic Evolution")
        with gr.TabItem("Confidence Analysis"):
            plot5 = gr.Plot(label="Confidence Gauge")
        with gr.TabItem("Sentiment Analysis"):
            plot6 = gr.Plot(label="Sentiment Analysis Result")

    with gr.Row():
        output_json = gr.JSON(label="Detailed Analysis Result (JSON)")

    submit_btn.click(
        fn=process_all_analysis,
        inputs=[text_input],
        outputs=[output_json, plot1, plot2, plot3, plot4, plot5, plot6]
    )

if __name__ == "__main__":
    demo.queue(max_size=1)
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,  # Set to True if you need a public shareable link.
        debug=True
    )