openfree commited on
Commit
2c099cb
·
verified ·
1 Parent(s): bb654bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +152 -60
app.py CHANGED
@@ -3,95 +3,187 @@ import gradio as gr
3
  import spaces
4
  import wbgtopic
5
  import plotly.graph_objects as go
 
 
 
 
 
 
 
 
6
  from topic_translator import translate_topics
 
 
7
 
8
- SAMPLE_TEXT = """A growing literature attributes gender inequality in labor market outcomes in part to the reduction in female labor supply after childbirth, the child penalty..."""
 
 
 
 
 
 
 
9
 
10
  clf = wbgtopic.WBGDocTopic()
11
 
12
- def create_chart(topics):
13
- # 데이터 준비
14
- labels = [t['label'] for t in topics]
15
- scores = [t['score'] for t in topics]
16
- confidence = [t['confidence'] for t in topics]
17
 
18
- # 막대 차트 생성
19
- fig = go.Figure()
 
20
 
21
- # 주요 막대 추가
22
- fig.add_trace(go.Bar(
23
- x=labels,
24
- y=scores,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  name='관련도',
26
  marker_color='rgb(55, 83, 109)'
27
  ))
 
28
 
29
- # 차트 레이아웃 설정
30
- fig.update_layout(
31
- title='문서 주제 분석 결과',
32
- xaxis_title='주제',
33
- yaxis_title='관련도 (%)',
34
- yaxis_range=[0, 100],
35
- height=500,
36
- font=dict(size=14)
37
- )
38
 
 
 
 
 
 
 
 
 
 
 
39
  return fig
40
 
41
- def process_results(results):
42
- if not results or not results[0]:
43
- return [], None
44
-
45
- topics = results[0]
46
- top_topics = sorted(topics, key=lambda x: x['score_mean'], reverse=True)[:5]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- formatted_topics = []
49
- for topic in top_topics:
50
- formatted_topic = {
51
- 'label': translate_topics.get(topic['label'], topic['label']),
52
- 'score': round(topic['score_mean'] * 100, 1),
53
- 'confidence': round((1 - topic['score_std']) * 100, 1)
54
- }
55
- formatted_topics.append(formatted_topic)
56
 
57
  # 차트 생성
58
- chart = create_chart(formatted_topics)
 
 
 
59
 
60
- return formatted_topics, chart
61
-
62
- @spaces.GPU(enable_queue=True, duration=50)
63
- def fn(inputs):
64
- raw_results = clf.suggest_topics(inputs)
65
- return process_results(raw_results)
 
 
 
 
66
 
67
- # Gradio 인터페이스 생성
68
- with gr.Blocks(title="문서 주제 분석기") as demo:
69
- gr.Markdown("## 📚 문서 주제 분석기")
70
- gr.Markdown("문서를 입력하면 관련된 주제들을 분석하여 보여줍니다.")
71
 
72
  with gr.Row():
73
- text = gr.Textbox(
74
- value=SAMPLE_TEXT,
75
- label="분석할 텍스트",
76
- placeholder="여기에 분석할 텍스트를 입력하세요",
77
- lines=5
78
- )
79
 
80
  with gr.Row():
81
- submit_btn = gr.Button("분석 시작", variant="primary")
82
 
83
- with gr.Row():
84
- # 차트를 보여줄 Plot 컴포넌트 추가
85
- plot = gr.Plot(label="주제 분석 차트")
 
 
86
 
 
 
 
 
 
 
 
 
 
 
 
87
  with gr.Row():
88
  output = gr.JSON(label="상세 분석 결과")
89
 
90
- # 이벤트 연결
91
  submit_btn.click(
92
- fn=fn,
93
  inputs=[text],
94
- outputs=[output, plot]
95
  )
96
 
97
- demo.launch(debug=True)
 
3
  import spaces
4
  import wbgtopic
5
  import plotly.graph_objects as go
6
+ import plotly.express as px
7
+ import plotly.figure_factory as ff
8
+ import nltk
9
+ import numpy as np
10
+ import pandas as pd
11
+ from collections import Counter
12
+ from scipy import stats
13
+ from wordcloud import WordCloud
14
  from topic_translator import translate_topics
15
+ from nltk.tokenize import sent_tokenize, word_tokenize
16
+ from nltk.sentiment import SentimentIntensityAnalyzer
17
 
18
+ # NLTK 필요 데이터 다운로드
19
+ nltk.download('punkt')
20
+ nltk.download('vader_lexicon')
21
+
22
+ SAMPLE_TEXT = """
23
+ The three reportedly discussed the Stargate Project, a large-scale AI initiative led by OpenAI, SoftBank, and U.S. software giant Oracle. The project aims to invest $500 billion over the next four years in building new AI infrastructure in the U.S. The U.S. government has shown a strong commitment to the initiative, with President Donald Trump personally announcing it at the White House the day after his inauguration last month. If Samsung participates, the project will lead to a Korea-U.S.-Japan AI alliance.
24
+ The AI sector requires massive investments and extensive resources, including advanced models, high-performance AI chips to power the models, and large-scale data centers to operate them. Nvidia and TSMC currently dominate the AI sector, but a partnership between Samsung, SoftBank, and OpenAI could pave the way for a competitive alternative.
25
+ """
26
 
27
  clf = wbgtopic.WBGDocTopic()
28
 
29
+ def analyze_text_sections(text):
30
+ # 문단별 분석
31
+ sentences = sent_tokenize(text)
32
+ sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]
33
+ section_topics = []
34
 
35
+ for section in sections:
36
+ topics = clf.suggest_topics(section)[0]
37
+ section_topics.append(topics)
38
 
39
+ return section_topics
40
+
41
+ def calculate_topic_correlations(topics):
42
+ # 주제 간 상관관계 계산
43
+ topic_scores = {}
44
+ for topic in topics:
45
+ topic_scores[topic['label']] = topic['score_mean']
46
+
47
+ correlation_matrix = np.corrcoef(list(topic_scores.values()))
48
+ return correlation_matrix, list(topic_scores.keys())
49
+
50
+ def perform_sentiment_analysis(text):
51
+ # 감성 분석
52
+ sia = SentimentIntensityAnalyzer()
53
+ sentences = sent_tokenize(text)
54
+ sentiments = [sia.polarity_scores(sent) for sent in sentences]
55
+ return pd.DataFrame(sentiments)
56
+
57
+ def create_topic_clusters(topics):
58
+ # 주제 군집화
59
+ from sklearn.cluster import KMeans
60
+ X = np.array([[t['score_mean'], t['score_std']] for t in topics])
61
+ kmeans = KMeans(n_clusters=3, random_state=42)
62
+ clusters = kmeans.fit_predict(X)
63
+ return clusters
64
+
65
+
66
+ def create_main_charts(topics):
67
+ # 1. 기본 막대 차트
68
+ bar_fig = go.Figure()
69
+ bar_fig.add_trace(go.Bar(
70
+ x=[t['label'] for t in topics],
71
+ y=[t['score'] for t in topics],
72
  name='관련도',
73
  marker_color='rgb(55, 83, 109)'
74
  ))
75
+ bar_fig.update_layout(title='주제 분석 결과', height=500)
76
 
77
+ # 2. 레이더 차트
78
+ radar_fig = go.Figure()
79
+ radar_fig.add_trace(go.Scatterpolar(
80
+ r=[t['score'] for t in topics],
81
+ theta=[t['label'] for t in topics],
82
+ fill='toself',
83
+ name='주제 분포'
84
+ ))
85
+ radar_fig.update_layout(title='주제 레이더 차트')
86
 
87
+ return bar_fig, radar_fig
88
+
89
+ def create_correlation_heatmap(corr_matrix, labels):
90
+ fig = go.Figure(data=go.Heatmap(
91
+ z=corr_matrix,
92
+ x=labels,
93
+ y=labels,
94
+ colorscale='Viridis'
95
+ ))
96
+ fig.update_layout(title='주제 간 상관관계')
97
  return fig
98
 
99
+ def create_topic_evolution(section_topics):
100
+ fig = go.Figure()
101
+ for topic in section_topics[0]:
102
+ topic_scores = [topics[topic['label']]['score_mean']
103
+ for topics in section_topics]
104
+ fig.add_trace(go.Scatter(
105
+ x=list(range(len(section_topics))),
106
+ y=topic_scores,
107
+ name=topic['label'],
108
+ mode='lines+markers'
109
+ ))
110
+ fig.update_layout(title='주제 변화 ��이')
111
+ return fig
112
+
113
+ def create_confidence_gauge(topics):
114
+ fig = go.Figure()
115
+ for topic in topics:
116
+ fig.add_trace(go.Indicator(
117
+ mode="gauge+number",
118
+ value=topic['confidence'],
119
+ title={'text': topic['label']},
120
+ domain={'row': 0, 'column': 0}
121
+ ))
122
+ fig.update_layout(grid={'rows': 1, 'columns': len(topics)})
123
+ return fig
124
+
125
+
126
+ def process_all_analysis(text):
127
+ # 기본 주제 분석
128
+ raw_results = clf.suggest_topics(text)
129
+ topics = process_results(raw_results)
130
 
131
+ # 추가 분석
132
+ section_topics = analyze_text_sections(text)
133
+ corr_matrix, labels = calculate_topic_correlations(topics)
134
+ sentiments = perform_sentiment_analysis(text)
135
+ clusters = create_topic_clusters(topics)
 
 
 
136
 
137
  # 차트 생성
138
+ bar_chart, radar_chart = create_main_charts(topics)
139
+ heatmap = create_correlation_heatmap(corr_matrix, labels)
140
+ evolution_chart = create_topic_evolution(section_topics)
141
+ gauge_chart = create_confidence_gauge(topics)
142
 
143
+ return {
144
+ 'topics': topics,
145
+ 'bar_chart': bar_chart,
146
+ 'radar_chart': radar_chart,
147
+ 'heatmap': heatmap,
148
+ 'evolution': evolution_chart,
149
+ 'gauge': gauge_chart,
150
+ 'sentiments': sentiments.to_dict(),
151
+ 'clusters': clusters.tolist()
152
+ }
153
 
154
+ with gr.Blocks(title="고급 문서 주제 분석기") as demo:
155
+ gr.Markdown("## 📊 고급 문서 주제 분석기")
 
 
156
 
157
  with gr.Row():
158
+ text = gr.Textbox(value=SAMPLE_TEXT, label="분석할 텍스트", lines=5)
 
 
 
 
 
159
 
160
  with gr.Row():
161
+ submit_btn = gr.Button("분석 시작")
162
 
163
+ with gr.Tabs():
164
+ with gr.TabItem("주요 분석"):
165
+ with gr.Row():
166
+ plot1 = gr.Plot(label="주제 분포")
167
+ plot2 = gr.Plot(label="레이더 차트")
168
 
169
+ with gr.TabItem("상세 분석"):
170
+ with gr.Row():
171
+ plot3 = gr.Plot(label="상관관계 히트맵")
172
+ plot4 = gr.Plot(label="주제 변화 추이")
173
+
174
+ with gr.TabItem("신뢰도 분석"):
175
+ plot5 = gr.Plot(label="신뢰도 게이지")
176
+
177
+ with gr.TabItem("감성 분석"):
178
+ plot6 = gr.Plot(label="감성 분석 결과")
179
+
180
  with gr.Row():
181
  output = gr.JSON(label="상세 분석 결과")
182
 
 
183
  submit_btn.click(
184
+ fn=process_all_analysis,
185
  inputs=[text],
186
+ outputs=[output, plot1, plot2, plot3, plot4, plot5, plot6]
187
  )
188
 
189
+ demo.launch(debug=True)