openfree commited on
Commit
5a47f9e
·
verified ·
1 Parent(s): 58d3ab4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -54
app.py CHANGED
@@ -58,15 +58,78 @@ def analyze_text_sections(text):
58
 
59
  @safe_process
60
  def calculate_topic_correlations(topics):
61
- topic_scores = {}
62
- for topic in topics:
63
- topic_scores[topic['label']] = topic['score_mean']
64
-
65
- if len(topic_scores) < 2:
66
- return np.array([[1]]), list(topic_scores.keys())
67
-
68
- correlation_matrix = np.corrcoef(list(topic_scores.values()))
69
- return correlation_matrix, list(topic_scores.keys())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  @safe_process
72
  def perform_sentiment_analysis(text):
@@ -197,50 +260,8 @@ def process_results(results):
197
 
198
  return formatted_topics
199
 
200
- @spaces.GPU(enable_queue=True, duration=50)
201
- def process_all_analysis(text):
202
- try:
203
- # 기본 주제 분석
204
- raw_results = clf.suggest_topics(text)
205
- topics = process_results(raw_results)
206
-
207
- # 추가 분석
208
- section_topics = analyze_text_sections(text)
209
- corr_matrix, labels = calculate_topic_correlations(topics)
210
- sentiments = perform_sentiment_analysis(text)
211
- clusters = create_topic_clusters(topics)
212
-
213
- # 차트 생성
214
- bar_chart, radar_chart = create_main_charts(topics)
215
- heatmap = create_correlation_heatmap(corr_matrix, labels)
216
- evolution_chart = create_topic_evolution(section_topics)
217
- gauge_chart = create_confidence_gauge(topics)
218
-
219
- return {
220
- 'topics': topics,
221
- 'bar_chart': bar_chart,
222
- 'radar_chart': radar_chart,
223
- 'heatmap': heatmap,
224
- 'evolution': evolution_chart,
225
- 'gauge': gauge_chart,
226
- 'sentiments': sentiments.to_dict() if sentiments is not None else {},
227
- 'clusters': clusters.tolist() if clusters is not None else []
228
- }
229
- except Exception as e:
230
- print(f"Analysis error: {str(e)}")
231
- return {
232
- 'error': str(e),
233
- 'topics': [],
234
- 'bar_chart': go.Figure(),
235
- 'radar_chart': go.Figure(),
236
- 'heatmap': go.Figure(),
237
- 'evolution': go.Figure(),
238
- 'gauge': go.Figure(),
239
- 'sentiments': {},
240
- 'clusters': []
241
- }
242
 
243
- # Gradio 인터페이스
244
  with gr.Blocks(title="고급 문서 주제 분석기") as demo:
245
  gr.Markdown("## 📊 고급 문서 주제 분석기")
246
  gr.Markdown("문서를 입력하면 다양한 분석 결과를 시각화하여 보여줍니다.")
@@ -283,10 +304,10 @@ with gr.Blocks(title="고급 문서 주제 분석기") as demo:
283
  )
284
 
285
  if __name__ == "__main__":
286
- demo.queue(max_size=1) # concurrency_count 대신 max_size 사용
287
  demo.launch(
288
  server_name="0.0.0.0",
289
  server_port=7860,
290
- share=False,
291
  debug=True
292
  )
 
58
 
59
  @safe_process
60
  def calculate_topic_correlations(topics):
61
+ try:
62
+ if not topics or len(topics) < 1:
63
+ return np.array([[1]]), ['No topics']
64
+
65
+ topic_scores = {}
66
+ for topic in topics:
67
+ if 'score_mean' in topic:
68
+ topic_scores[topic['label']] = topic['score_mean']
69
+ elif 'score' in topic: # score로도 확인
70
+ topic_scores[topic['label']] = topic['score'] / 100.0
71
+
72
+ if len(topic_scores) < 1:
73
+ return np.array([[1]]), ['No valid scores']
74
+
75
+ correlation_matrix = np.corrcoef(list(topic_scores.values()))
76
+ return correlation_matrix, list(topic_scores.keys())
77
+ except Exception as e:
78
+ print(f"Correlation calculation error: {e}")
79
+ return np.array([[1]]), ['Error']
80
+
81
+ @spaces.GPU()
82
+ def process_all_analysis(text):
83
+ try:
84
+ # 기본 주제 분석
85
+ raw_results = clf.suggest_topics(text)
86
+ topics = process_results(raw_results)
87
+
88
+ # 추가 분석
89
+ section_topics = analyze_text_sections(text)
90
+ corr_matrix, labels = calculate_topic_correlations(topics)
91
+ sentiments = perform_sentiment_analysis(text)
92
+ clusters = create_topic_clusters(topics)
93
+
94
+ # 차트 생성
95
+ bar_chart, radar_chart = create_main_charts(topics)
96
+ heatmap = create_correlation_heatmap(corr_matrix, labels)
97
+ evolution_chart = create_topic_evolution(section_topics)
98
+ gauge_chart = create_confidence_gauge(topics)
99
+
100
+ results = {
101
+ 'topics': topics,
102
+ 'bar_chart': bar_chart,
103
+ 'radar_chart': radar_chart,
104
+ 'heatmap': heatmap,
105
+ 'evolution': evolution_chart,
106
+ 'gauge': gauge_chart,
107
+ 'sentiments': sentiments.to_dict() if sentiments is not None else {},
108
+ 'clusters': clusters.tolist() if clusters is not None else []
109
+ }
110
+
111
+ # 개별 결과 반환
112
+ return (
113
+ results, # JSON output
114
+ bar_chart, # plot1
115
+ radar_chart, # plot2
116
+ heatmap, # plot3
117
+ evolution_chart, # plot4
118
+ gauge_chart, # plot5
119
+ go.Figure() # plot6 (빈 감성 분석 차트)
120
+ )
121
+ except Exception as e:
122
+ print(f"Analysis error: {str(e)}")
123
+ empty_fig = go.Figure()
124
+ return (
125
+ {'error': str(e), 'topics': []},
126
+ empty_fig,
127
+ empty_fig,
128
+ empty_fig,
129
+ empty_fig,
130
+ empty_fig,
131
+ empty_fig
132
+ )
133
 
134
  @safe_process
135
  def perform_sentiment_analysis(text):
 
260
 
261
  return formatted_topics
262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263
 
264
+
265
  with gr.Blocks(title="고급 문서 주제 분석기") as demo:
266
  gr.Markdown("## 📊 고급 문서 주제 분석기")
267
  gr.Markdown("문서를 입력하면 다양한 분석 결과를 시각화하여 보여줍니다.")
 
304
  )
305
 
306
  if __name__ == "__main__":
307
+ demo.queue(max_size=1)
308
  demo.launch(
309
  server_name="0.0.0.0",
310
  server_port=7860,
311
+ share=True, # 공개 링크 생성을 위해 True로 설정
312
  debug=True
313
  )