Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
96070b5
1
Parent(s):
2b1e4b7
Add wbgtopic
Browse filesSigned-off-by: avsolatorio <[email protected]>
- app.py +8 -3
- requirements.txt +2 -0
- wbgtopic.py +98 -0
app.py
CHANGED
@@ -1,7 +1,12 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import wbgtopic
|
3 |
|
4 |
+
clf = wbgtopic.WBGDocTopic()
|
|
|
5 |
|
6 |
+
|
7 |
+
def fn(inputs):
|
8 |
+
return clf.suggest_topics(inputs)
|
9 |
+
|
10 |
+
|
11 |
+
demo = gr.Interface(fn=clf.suggest_topics, inputs="text", outputs=gr.JSON(label="Suggested topics"))
|
12 |
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
nltk
|
2 |
+
transformers[torch]
|
wbgtopic.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from tqdm.auto import tqdm
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import nltk
|
6 |
+
|
7 |
+
# Download the nltk data if not present
|
8 |
+
nltk.download('punkt_tab')
|
9 |
+
nltk.download('punkt')
|
10 |
+
|
11 |
+
|
12 |
+
class WBGDocTopic:
|
13 |
+
"""
|
14 |
+
A class to handle document topic suggestion using multiple pre-trained text classification models.
|
15 |
+
|
16 |
+
This class loads a set of text classification models from Hugging Face's model hub and
|
17 |
+
provides a method to suggest topics for input documents based on the aggregated classification
|
18 |
+
results from all the models.
|
19 |
+
|
20 |
+
Attributes:
|
21 |
+
-----------
|
22 |
+
classifiers : dict
|
23 |
+
A dictionary mapping model names to corresponding classification pipelines. It holds
|
24 |
+
instances of Hugging Face's `pipeline` used for text classification.
|
25 |
+
|
26 |
+
Methods:
|
27 |
+
--------
|
28 |
+
__init__(classifiers: dict = None)
|
29 |
+
Initializes the `WBGDocTopic` instance. If no classifiers are provided, it loads a default
|
30 |
+
set of classifiers by calling `load_classifiers`.
|
31 |
+
|
32 |
+
load_classifiers()
|
33 |
+
Loads a predefined set of document topic classifiers into the `classifiers` dictionary.
|
34 |
+
It uses `tqdm` to display progress as the classifiers are loaded.
|
35 |
+
|
36 |
+
suggest_topics(input_docs: str | list[str]) -> list
|
37 |
+
Suggests topics for the given document or list of documents. It runs each document
|
38 |
+
through all classifiers, averages their scores, and returns a list of dictionaries where each
|
39 |
+
dictionary contains the mean and standard deviation of the topic scores per document.
|
40 |
+
|
41 |
+
Parameters:
|
42 |
+
-----------
|
43 |
+
input_docs : str or list of str
|
44 |
+
A single document or a list of documents for which to suggest topics.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
--------
|
48 |
+
list
|
49 |
+
A list of dictionaries, where each dictionary represents the suggested topics for
|
50 |
+
each document, along with the mean and standard deviation of the topic classification scores.
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(self, classifiers: dict = None, device: str = None):
|
54 |
+
self.classifiers = classifiers or {}
|
55 |
+
self.device = device
|
56 |
+
|
57 |
+
if classifiers is None:
|
58 |
+
self.load_classifiers()
|
59 |
+
|
60 |
+
def load_classifiers(self):
|
61 |
+
num_evals = 5
|
62 |
+
num_train = 5
|
63 |
+
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained("avsolatorio/doc-topic-model_eval-04_train-03")
|
65 |
+
|
66 |
+
for i in tqdm(range(num_evals)):
|
67 |
+
for j in tqdm(range(num_train)):
|
68 |
+
if i == j:
|
69 |
+
continue
|
70 |
+
|
71 |
+
model_name = f"avsolatorio/doc-topic-model_eval-{i:02}_train-{j:02}"
|
72 |
+
classifier = pipeline("text-classification", model=model_name, tokenizer=tokenizer, top_k=None, device=self.device)
|
73 |
+
|
74 |
+
self.classifiers[model_name] = classifier
|
75 |
+
|
76 |
+
def suggest_topics(self, input_docs: str | list[str]):
|
77 |
+
if isinstance(input_docs, str):
|
78 |
+
input_docs = [input_docs]
|
79 |
+
|
80 |
+
doc_outs = {i: [] for i in range(len(input_docs))}
|
81 |
+
topics = []
|
82 |
+
|
83 |
+
for _, classifier in self.classifiers.items():
|
84 |
+
for doc_idx, doc in enumerate(classifier(input_docs)):
|
85 |
+
doc_outs[doc_idx].append(pd.DataFrame.from_records(doc, index="label"))
|
86 |
+
|
87 |
+
for doc_idx, outs in doc_outs.items():
|
88 |
+
all_scores = pd.concat(outs, axis=1)
|
89 |
+
mean_probs = all_scores.mean(axis=1).sort_values(ascending=False)
|
90 |
+
std_probs = all_scores.std(axis=1).loc[mean_probs.index]
|
91 |
+
output = pd.DataFrame({"score_mean": mean_probs, "score_std": std_probs})
|
92 |
+
|
93 |
+
output["doc_idx"] = doc_idx
|
94 |
+
output.reset_index(inplace=True)
|
95 |
+
|
96 |
+
topics.append(output.to_dict(orient="records"))
|
97 |
+
|
98 |
+
return topics
|