Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,976 Bytes
dfa0bd7 2b1e4b7 d27df0e 96070b5 bc928c9 2c099cb 6efc05e 2c099cb ea6037b 6efc05e ea6037b 2b1e4b7 6efc05e ea6037b 6efc05e 2c099cb 6efc05e 4efedce ea6037b 2b1e4b7 6efc05e ea6037b 2c099cb 6efc05e 2c099cb 6efc05e 2c099cb bc928c9 6efc05e 2c099cb 6efc05e bc928c9 2c099cb 6efc05e ea6037b 6efc05e 5a47f9e 2c099cb ea6037b 2c099cb 6efc05e 2c099cb ea6037b 6efc05e ea6037b 6efc05e 2c099cb 6efc05e 2c099cb ea6037b 6efc05e ea6037b 6efc05e ea6037b bc928c9 6efc05e 2c099cb 6efc05e 2c099cb ea6037b 6efc05e ea6037b 6efc05e ea6037b 2c099cb 6efc05e ea6037b 2c099cb 6efc05e 2c099cb ea6037b bc928c9 6efc05e ea6037b 2c099cb 6efc05e 2c099cb 6efc05e ea6037b 6efc05e ea6037b 2c099cb 6efc05e ea6037b 6efc05e 2c099cb 6efc05e 2c099cb 6efc05e 2c099cb 6efc05e ea6037b 6efc05e ea6037b 2c099cb 6efc05e ea6037b 6efc05e bc928c9 6efc05e ea6037b 96070b5 6efc05e 5a47f9e 2c099cb 74b6cd5 6efc05e ea6037b 74b6cd5 ea6037b 74b6cd5 2c099cb 6efc05e bc928c9 6efc05e 74b6cd5 4efedce 2c099cb 6efc05e 4efedce ea6037b 5a47f9e ea6037b 6efc05e ea6037b 6efc05e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import json
import gradio as gr
import spaces
import wbgtopic
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer
from sklearn.cluster import KMeans
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize WBGDocTopic
clf = wbgtopic.WBGDocTopic(device=device)
try:
nltk.download('punkt', quiet=True)
nltk.download('vader_lexicon', quiet=True)
except:
pass
SAMPLE_TEXT = """Your sample text here ..."""
def safe_process(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Error in {func.__name__}: {str(e)}")
return None
return wrapper
################################################################
# 1) Convert Raw Results into a Consistent Format #
################################################################
@safe_process
def parse_wbg_results(raw_output):
"""
Example: raw_output might be something like:
[
{ 'Innovation and Entrepreneurship': 0.32,
'Digital Development': 0.27,
...}
]
or it might be [ [ {...}, {...} ] ]
Adjust logic so we end up with a list of dicts:
[
{'label': 'Innovation and Entrepreneurship', 'score_mean': 0.32, 'score_std': 0.0},
{'label': 'Digital Development', 'score_mean': 0.27, 'score_std': 0.0},
...
]
"""
if not raw_output:
return []
# If the library returns a list with a single dictionary:
# raw_output[0] might be a dict of {topic: score}
# or it might be a list of dicts with 'label'/'score_mean' keys
first_item = raw_output[0]
# If it's already a list of dicts with 'label', 'score_mean', etc.
if isinstance(first_item, dict) and 'label' in first_item:
# Possibly we already have the correct format
return raw_output
# If it's a dict of {topic_label: numeric_score}
if isinstance(first_item, dict):
# Then let's convert it
parsed_list = []
for label, val in first_item.items():
parsed_list.append({
'label': label,
'score_mean': float(val),
'score_std': 0.0 # If no std is given, default 0
})
return parsed_list
# If itโs something else, handle it
return []
################################################################
# 2) Section-based Analysis #
################################################################
@safe_process
def analyze_text_sections(text):
"""
Splits text into sections, calls clf.suggest_topics on each,
and returns a list-of-lists:
section_topics = [
[ {'label':'...', 'score_mean':...}, {...} ],
[ {'label':'...', 'score_mean':...}, {...} ],
...
]
"""
sentences = sent_tokenize(text)
# e.g. group 3 sentences per section
sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]
section_topics = []
for section in sections:
raw_sec = clf.suggest_topics(section)
parsed_sec = parse_wbg_results(raw_sec)
section_topics.append(parsed_sec)
return section_topics
################################################################
# 3) Basic Summaries (Correlation, Sentiment, Clusters etc.) #
################################################################
@safe_process
def calculate_topic_correlations(topic_dicts):
"""
If we only want a single dimension correlation (like score_mean),
we can do a simple correlation across different topics.
But typically you'd want multiple texts or some multi-dimensional approach.
"""
if len(topic_dicts) < 2:
# Not enough to do correlation
return np.array([[1.0]]), ["Insufficient topics"]
labels = [d['label'] for d in topic_dicts]
scores = [d['score_mean'] for d in topic_dicts] # single dimension
if len(scores) < 2:
return np.array([[1.0]]), ["Insufficient topics"]
corr_matrix = np.corrcoef(scores)
return corr_matrix, labels
@safe_process
def perform_sentiment_analysis(text):
sia = SentimentIntensityAnalyzer()
sents = sent_tokenize(text)
results = [sia.polarity_scores(s) for s in sents]
return pd.DataFrame(results)
@safe_process
def create_topic_clusters(topic_dicts):
if len(topic_dicts) < 3:
return [0]*len(topic_dicts) # trivial cluster
# Must have 'score_mean' and 'score_std' or something else
X = []
for t in topic_dicts:
X.append([t['score_mean'], t.get('score_std', 0.0)])
X = np.array(X)
if X.shape[0] < 3:
return [0]*X.shape[0]
kmeans = KMeans(n_clusters=min(3, X.shape[0]), random_state=42)
clusters = kmeans.fit_predict(X)
return clusters.tolist() # safe to JSON-encode
################################################################
# 4) Charts (Bar, Radar, Correlation Heatmap, etc.) #
################################################################
@safe_process
def create_main_charts(topic_dicts):
"""
Expects a list of dicts with keys: 'label', 'score_mean', ...
We'll just use 'score_mean' (or a scaled version).
"""
if not topic_dicts:
return go.Figure(), go.Figure()
# Bar chart
labels = [t['label'] for t in topic_dicts]
scores = [t['score_mean']*100 for t in topic_dicts] # convert to %
bar_fig = go.Figure(
data=[go.Bar(x=labels, y=scores, marker_color='rgb(55, 83, 109)')]
)
bar_fig.update_layout(
title='์ฃผ์ ๋ถ์ ๊ฒฐ๊ณผ',
xaxis_title='์ฃผ์ ',
yaxis_title='๊ด๋ จ๋ (%)',
template='plotly_white',
height=500,
)
# Radar chart
radar_fig = go.Figure()
radar_fig.add_trace(go.Scatterpolar(
r=scores,
theta=labels,
fill='toself',
name='์ฃผ์ ๋ถํฌ'
))
radar_fig.update_layout(
title='์ฃผ์ ๋ ์ด๋ ์ฐจํธ',
template='plotly_white',
height=500,
polar=dict(radialaxis=dict(visible=True)),
showlegend=False
)
return bar_fig, radar_fig
@safe_process
def create_correlation_heatmap(corr_matrix, labels):
if corr_matrix.ndim == 0:
# It's a scalar => shape ()
corr_matrix = np.array([[corr_matrix]])
if corr_matrix.shape == (1,1):
# Usually means not enough data
fig = go.Figure()
fig.add_annotation(text="Not enough topics for correlation", showarrow=False)
return fig
fig = go.Figure(data=go.Heatmap(
z=corr_matrix,
x=labels,
y=labels,
colorscale='Viridis'
))
fig.update_layout(
title='์ฃผ์ ๊ฐ ์๊ด๊ด๊ณ',
height=500,
template='plotly_white'
)
return fig
@safe_process
def create_topic_evolution(section_topics):
"""
section_topics: list of [ {label:..., score_mean:...}, ...]
one element per section
"""
fig = go.Figure()
if not section_topics or len(section_topics) == 0:
return fig
# Take the first sectionโs list as reference
if not section_topics[0]:
return fig
# For each topic in the first section, gather its evolution
for topic_dict in section_topics[0]:
label = topic_dict['label']
score_list = []
for sec_list in section_topics:
# find matching label
match = next((d for d in sec_list if d['label'] == label), None)
if match:
score_list.append(match['score_mean'])
else:
score_list.append(0.0)
fig.add_trace(go.Scatter(
x=list(range(len(section_topics))),
y=score_list,
name=label,
mode='lines+markers'
))
fig.update_layout(
title='์ฃผ์ ๋ณํ ์ถ์ด',
xaxis_title='์น์
',
yaxis_title='score_mean',
height=500,
template='plotly_white'
)
return fig
@safe_process
def create_confidence_gauge(topic_dicts):
"""
If your data doesnโt actually have a separate confidence measure,
you may skip or adapt. For example, you might define confidence
= (1 - score_std)*100
"""
if not topic_dicts:
return go.Figure()
fig = go.Figure()
num_topics = len(topic_dicts)
for i, t in enumerate(topic_dicts):
confidence_val = 100.0*(1.0 - t.get('score_std', 0.0)) # an example
fig.add_trace(go.Indicator(
mode="gauge+number",
value=confidence_val,
title={'text': t['label']},
domain={'row': 0, 'column': i}
))
fig.update_layout(
grid={'rows': 1, 'columns': num_topics},
height=400,
template='plotly_white'
)
return fig
################################################################
# 5) Putting Everything into `process_all_analysis` #
################################################################
@spaces.GPU()
def process_all_analysis(text):
try:
# 1) Suggest topics on the entire text
raw_results = clf.suggest_topics(text)
all_topics = parse_wbg_results(raw_results) # keep full list of dicts
# 2) Top 5 (if you want to highlight them)
# Sort by score_mean descending
sorted_topics = sorted(all_topics, key=lambda x: x['score_mean'], reverse=True)
top_topics = sorted_topics[:5]
# 3) Section-based
section_topics = analyze_text_sections(text) # list of lists
# 4) Extra analyses
corr_matrix, corr_labels = calculate_topic_correlations(all_topics)
sentiments_df = perform_sentiment_analysis(text)
clusters = create_topic_clusters(all_topics)
# 5) Build charts
bar_chart, radar_chart = create_main_charts(top_topics) # show top 5 on bar
heatmap = create_correlation_heatmap(corr_matrix, corr_labels)
evolution_chart = create_topic_evolution(section_topics)
gauge_chart = create_confidence_gauge(top_topics)
# 6) Prepare output for the JSON field
# Make sure everything is JSON-serializable with string keys
results = {
"top_topics": top_topics, # list of dict
"clusters": clusters, # list of ints
"sentiments": sentiments_df.to_dict(orient="records"),
}
return (
results, # JSON output
bar_chart, # plot1
radar_chart, # plot2
heatmap, # plot3
evolution_chart,# plot4
gauge_chart, # plot5
go.Figure() # plot6 (placeholder for sentiment plot, or skip)
)
except Exception as e:
print(f"Analysis error: {str(e)}")
empty_fig = go.Figure()
return (
{"error": str(e), "topics": []},
empty_fig,
empty_fig,
empty_fig,
empty_fig,
empty_fig,
empty_fig
)
################################################################
# 6) Gradio UI #
################################################################
with gr.Blocks(title="๊ณ ๊ธ ๋ฌธ์ ์ฃผ์ ๋ถ์๊ธฐ") as demo:
gr.Markdown("## ๐ ๊ณ ๊ธ ๋ฌธ์ ์ฃผ์ ๋ถ์๊ธฐ")
with gr.Row():
text_input = gr.Textbox(
value=SAMPLE_TEXT,
label="๋ถ์ํ ํ
์คํธ",
lines=8
)
with gr.Row():
submit_btn = gr.Button("๋ถ์ ์์", variant="primary")
with gr.Tabs():
with gr.TabItem("์ฃผ์ ๋ถ์"):
with gr.Row():
plot1 = gr.Plot(label="์ฃผ์ ๋ถํฌ")
plot2 = gr.Plot(label="๋ ์ด๋ ์ฐจํธ")
with gr.TabItem("์์ธ ๋ถ์"):
with gr.Row():
plot3 = gr.Plot(label="์๊ด๊ด๊ณ ํํธ๋งต")
plot4 = gr.Plot(label="์ฃผ์ ๋ณํ ์ถ์ด")
with gr.TabItem("์ ๋ขฐ๋ ๋ถ์"):
plot5 = gr.Plot(label="์ ๋ขฐ๋ ๊ฒ์ด์ง")
with gr.TabItem("๊ฐ์ฑ ๋ถ์"):
plot6 = gr.Plot(label="๊ฐ์ฑ ๋ถ์ ๊ฒฐ๊ณผ")
with gr.Row():
output_json = gr.JSON(label="์์ธ ๋ถ์ ๊ฒฐ๊ณผ")
submit_btn.click(
fn=process_all_analysis,
inputs=[text_input],
outputs=[output_json, plot1, plot2, plot3, plot4, plot5, plot6]
)
if __name__ == "__main__":
demo.queue(max_size=1)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)
|