File size: 13,189 Bytes
dfa0bd7
2b1e4b7
d27df0e
96070b5
bc928c9
2c099cb
 
 
6efc05e
2c099cb
 
ea6037b
6efc05e
ea6037b
2134133
ea6037b
2b1e4b7
6efc05e
 
 
2134133
ea6037b
 
 
2134133
 
2c099cb
2134133
 
 
 
 
4efedce
ea6037b
2134133
 
 
 
 
ea6037b
 
 
 
 
 
 
2b1e4b7
6efc05e
 
 
2134133
 
 
6efc05e
 
 
2134133
 
 
 
6efc05e
2134133
 
 
6efc05e
2134133
 
6efc05e
 
 
 
2134133
 
 
6efc05e
 
 
2134133
6efc05e
ea6037b
2c099cb
6efc05e
2134133
 
 
6efc05e
2c099cb
2134133
2c099cb
2134133
6efc05e
2c099cb
6efc05e
 
 
2c099cb
2134133
6efc05e
ea6037b
6efc05e
 
2134133
 
 
 
6efc05e
 
 
2134133
6efc05e
2134133
 
6efc05e
 
2134133
6efc05e
 
5a47f9e
ea6037b
2c099cb
2134133
 
 
 
 
2c099cb
6efc05e
 
 
 
ea6037b
6efc05e
2134133
 
 
 
6efc05e
2134133
 
6efc05e
 
 
2134133
6efc05e
 
2134133
 
6efc05e
2c099cb
2134133
2c099cb
ea6037b
6efc05e
 
2134133
 
6efc05e
 
 
2134133
6efc05e
2134133
 
 
6efc05e
 
 
ea6037b
2134133
 
 
6efc05e
 
ea6037b
2134133
6efc05e
2c099cb
 
6efc05e
 
2c099cb
2134133
2c099cb
ea6037b
2134133
6efc05e
ea6037b
6efc05e
 
ea6037b
2c099cb
 
ea6037b
2c099cb
2134133
 
 
 
6efc05e
 
 
2134133
 
 
6efc05e
 
 
2134133
2c099cb
 
 
 
 
 
ea6037b
2134133
ea6037b
 
 
bc928c9
 
ea6037b
2c099cb
6efc05e
2134133
 
 
6efc05e
2c099cb
6efc05e
 
2134133
6efc05e
 
2134133
 
6efc05e
 
 
 
 
 
 
 
 
2134133
6efc05e
 
 
 
 
 
2134133
ea6037b
2134133
 
 
ea6037b
 
 
2c099cb
 
ea6037b
6efc05e
 
2134133
 
6efc05e
 
 
2134133
2c099cb
6efc05e
2134133
6efc05e
2134133
 
2c099cb
 
2134133
6efc05e
 
2c099cb
2134133
ea6037b
6efc05e
ea6037b
 
 
2c099cb
 
6efc05e
 
2134133
 
 
 
6efc05e
2134133
6efc05e
2134133
 
 
6efc05e
 
2134133
 
 
 
6efc05e
 
 
 
2134133
6efc05e
2134133
6efc05e
 
 
2134133
 
6efc05e
2134133
 
 
ea6037b
2134133
 
6efc05e
 
 
 
 
 
 
2134133
6efc05e
2134133
6efc05e
 
 
 
 
 
 
 
 
 
 
 
ea6037b
2134133
 
 
96070b5
2134133
 
 
 
 
 
5a47f9e
74b6cd5
6efc05e
ea6037b
2134133
ea6037b
 
74b6cd5
2134133
 
2c099cb
2134133
2c099cb
2134133
 
 
2c099cb
2134133
 
 
 
 
 
 
bc928c9
2134133
 
4efedce
2c099cb
6efc05e
 
4efedce
 
ea6037b
5a47f9e
ea6037b
 
 
2134133
ea6037b
6efc05e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import json
import gradio as gr
import spaces
import wbgtopic
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.sentiment import SentimentIntensityAnalyzer
from sklearn.cluster import KMeans
import torch

# Set GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Initialize WBGDocTopic
clf = wbgtopic.WBGDocTopic(device=device)

# Download NLTK data if needed
try:
    nltk.download('punkt', quiet=True)
    nltk.download('vader_lexicon', quiet=True)
except Exception as e:
    print(f"NLTK data download error: {e}")

# Sample text for demonstration
SAMPLE_TEXT = """
The three reportedly discussed the Stargate Project, a large-scale AI initiative led by OpenAI, SoftBank, and U.S. software giant Oracle. The project aims to invest $500 billion over the next four years in building new AI infrastructure in the U.S. The U.S. government has shown a strong commitment to the initiative, with President Donald Trump personally announcing it at the White House the day after his inauguration last month. If Samsung participates, the project will lead to a Korea-U.S.-Japan AI alliance.
The AI sector requires massive investments and extensive resources, including advanced models, high-performance AI chips to power the models, and large-scale data centers to operate them. Nvidia and TSMC currently dominate the AI sector, but a partnership between Samsung, SoftBank, and OpenAI could pave the way for a competitive alternative.
"""

def safe_process(func):
    """
    A decorator that catches and logs exceptions inside a function,
    returning None if an error occurs. This helps ensure that
    the Gradio interface does not crash from unexpected exceptions.
    """
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            print(f"Error in {func.__name__}: {str(e)}")
            return None
    return wrapper

@safe_process
def parse_wbg_results(raw_output):
    """
    Convert the raw output from WBGDocTopic into a list of dictionaries with
    'label', 'score_mean', and 'score_std'. Adjust logic according to the
    actual structure of raw_output.
    """
    if not raw_output:
        return []

    # Example logic: If raw_output is something like:
    # [ { "Innovation and Entrepreneurship": 0.74, "Digital Development": 0.65, ... } ]
    # We'll parse it accordingly.
    first_item = raw_output[0]

    # If the first item is already a dict with a 'label' key, it might already be in the right format
    if isinstance(first_item, dict) and "label" in first_item:
        return raw_output

    # If it's a dict containing topic -> score
    if isinstance(first_item, dict):
        parsed_list = []
        for label, val in first_item.items():
            parsed_list.append({
                "label": label,
                "score_mean": float(val),
                "score_std": 0.0  # If std is not provided, default to 0
            })
        return parsed_list

    return []

@safe_process
def analyze_text_sections(text):
    """
    Splits the text into sections and calls clf.suggest_topics for each section.
    Returns a list of topic lists, where each element is the parsed WBG result
    for that section.
    """
    sentences = sent_tokenize(text)
    # Example: group every 3 sentences into one section
    sections = [' '.join(sentences[i:i+3]) for i in range(0, len(sentences), 3)]

    section_topics = []
    for section in sections:
        raw_sec = clf.suggest_topics(section)
        parsed_sec = parse_wbg_results(raw_sec)
        section_topics.append(parsed_sec)

    return section_topics

@safe_process
def calculate_topic_correlations(topic_dicts):
    """
    Calculates correlation between topics based on 'score_mean'.
    This is usually a single-dimensional correlation across different topics,
    which can be conceptually limited, but shown here as an example.
    Returns (corr_matrix, labels).
    """
    if len(topic_dicts) < 2:
        return np.array([[1.0]]), ["Insufficient topics"]

    labels = [d['label'] for d in topic_dicts]
    scores = [d['score_mean'] for d in topic_dicts]

    if len(scores) < 2:
        return np.array([[1.0]]), ["Insufficient topics"]

    corr_matrix = np.corrcoef(scores)
    return corr_matrix, labels

@safe_process
def perform_sentiment_analysis(text):
    """
    Uses NLTK's VADER sentiment analyzer to produce sentiment scores
    (neg, neu, pos, compound) for each sentence in the text.
    Returns a pandas DataFrame of results.
    """
    sia = SentimentIntensityAnalyzer()
    sents = sent_tokenize(text)
    results = [sia.polarity_scores(s) for s in sents]
    return pd.DataFrame(results)

@safe_process
def create_topic_clusters(topic_dicts):
    """
    Applies a KMeans clustering on (score_mean, score_std).
    If there are fewer than 3 topics, returns trivial cluster assignments.
    """
    if len(topic_dicts) < 3:
        return [0] * len(topic_dicts)

    X = []
    for t in topic_dicts:
        X.append([t['score_mean'], t.get('score_std', 0.0)])

    X = np.array(X)
    if X.shape[0] < 3:
        return [0] * X.shape[0]

    kmeans = KMeans(n_clusters=min(3, X.shape[0]), random_state=42)
    clusters = kmeans.fit_predict(X)
    return clusters.tolist()

@safe_process
def create_main_charts(topic_dicts):
    """
    Creates a bar chart and a radar chart for the given list of topics.
    Uses 'score_mean' as the base score.
    """
    if not topic_dicts:
        return go.Figure(), go.Figure()

    labels = [t['label'] for t in topic_dicts]
    scores = [t['score_mean'] * 100 for t in topic_dicts]  # scale to %

    # Bar chart
    bar_fig = go.Figure(
        data=[go.Bar(x=labels, y=scores, marker_color='rgb(55, 83, 109)')]
    )
    bar_fig.update_layout(
        title='Topic Analysis Results',
        xaxis_title='Topics',
        yaxis_title='Relevance (%)',
        template='plotly_white',
        height=500,
    )

    # Radar chart
    radar_fig = go.Figure()
    radar_fig.add_trace(go.Scatterpolar(
        r=scores,
        theta=labels,
        fill='toself',
        name='Topic Distribution'
    ))
    radar_fig.update_layout(
        title='Topic Radar Chart',
        template='plotly_white',
        height=500,
        polar=dict(radialaxis=dict(visible=True)),
        showlegend=False
    )
    return bar_fig, radar_fig

@safe_process
def create_correlation_heatmap(corr_matrix, labels):
    """
    Creates a heatmap figure of the provided correlation matrix.
    If there's insufficient data, shows a placeholder message.
    """
    if corr_matrix.ndim == 0:
        # It's a scalar => shape ()
        corr_matrix = np.array([[corr_matrix]])

    if corr_matrix.shape == (1, 1):
        # Not enough data for correlation
        fig = go.Figure()
        fig.add_annotation(text="Not enough topics for correlation", showarrow=False)
        return fig

    fig = go.Figure(data=go.Heatmap(
        z=corr_matrix,
        x=labels,
        y=labels,
        colorscale='Viridis'
    ))
    fig.update_layout(
        title='Topic Correlation Heatmap',
        height=500,
        template='plotly_white'
    )
    return fig

@safe_process
def create_topic_evolution(section_topics):
    """
    Plots topic evolution across sections.
    section_topics: list of lists, where each inner list
    is a list of dicts [{'label':..., 'score_mean':...}, ...]
    """
    fig = go.Figure()
    if not section_topics or len(section_topics) == 0:
        return fig

    if not section_topics[0]:
        return fig

    # For each topic in the first section, track the score across all sections
    for topic_dict in section_topics[0]:
        label = topic_dict['label']
        score_list = []
        for sec_list in section_topics:
            match = next((d for d in sec_list if d['label'] == label), None)
            if match:
                score_list.append(match['score_mean'])
            else:
                score_list.append(0.0)

        fig.add_trace(go.Scatter(
            x=list(range(len(section_topics))),
            y=score_list,
            name=label,
            mode='lines+markers'
        ))

    fig.update_layout(
        title='Topic Evolution Across Sections',
        xaxis_title='Section',
        yaxis_title='Score Mean',
        height=500,
        template='plotly_white'
    )
    return fig

@safe_process
def create_confidence_gauge(topic_dicts):
    """
    Creates individual gauge indicators for each topic's confidence.
    A simple heuristic: confidence = (1 - score_std) * 100.
    """
    if not topic_dicts:
        return go.Figure()

    fig = go.Figure()
    num_topics = len(topic_dicts)

    for i, t in enumerate(topic_dicts):
        # If score_std not present, default to 0 => confidence = 100%
        conf_val = 100.0 * (1.0 - t.get("score_std", 0.0))
        fig.add_trace(go.Indicator(
            mode="gauge+number",
            value=conf_val,
            title={'text': t['label']},
            domain={'row': 0, 'column': i}
        ))

    fig.update_layout(
        grid={'rows': 1, 'columns': num_topics},
        height=400,
        template='plotly_white'
    )
    return fig

@spaces.GPU()
def process_all_analysis(text):
    """
    Main function that calls all analysis steps and returns
    structured JSON plus various Plotly figures.
    """
    try:
        # 1) Suggest topics for the entire text
        raw_results = clf.suggest_topics(text)
        all_topics = parse_wbg_results(raw_results)

        # 2) Sort by 'score_mean' descending to get top 5
        sorted_topics = sorted(all_topics, key=lambda x: x['score_mean'], reverse=True)
        top_topics = sorted_topics[:5]

        # 3) Analyze by sections
        section_topics = analyze_text_sections(text)

        # 4) Extra analyses
        corr_matrix, corr_labels = calculate_topic_correlations(all_topics)
        sentiments_df = perform_sentiment_analysis(text)
        clusters = create_topic_clusters(all_topics)

        # 5) Build charts
        bar_chart, radar_chart = create_main_charts(top_topics)
        heatmap = create_correlation_heatmap(corr_matrix, corr_labels)
        evolution_chart = create_topic_evolution(section_topics)
        gauge_chart = create_confidence_gauge(top_topics)

        # 6) Prepare JSON output (ensure valid JSON with string keys)
        results = {
            "top_topics": top_topics,                # list of dict
            "clusters": clusters,                   # list of ints
            "sentiments": sentiments_df.to_dict(orient="records")
        }

        # Return JSON + Figures
        return (
            results,        # JSON output
            bar_chart,      # plot1
            radar_chart,    # plot2
            heatmap,        # plot3
            evolution_chart,# plot4
            gauge_chart,    # plot5
            go.Figure()     # plot6 (placeholder for sentiment plot, if desired)
        )

    except Exception as e:
        print(f"Analysis error: {str(e)}")
        empty_fig = go.Figure()
        return (
            {"error": str(e), "topics": []},
            empty_fig,
            empty_fig,
            empty_fig,
            empty_fig,
            empty_fig,
            empty_fig
        )

######################################################
#                Gradio UI Definition               #
######################################################

with gr.Blocks(title="Advanced Document Topic Analyzer") as demo:
    gr.Markdown("## 📝 Advanced Document Topic Analyzer")
    gr.Markdown(
        "Enter text, then click 'Start Analysis' to see topic analysis, correlation, "
        "confidence gauges, sentiment, and more."
    )

    with gr.Row():
        text_input = gr.Textbox(
            value=SAMPLE_TEXT,
            label="Text to Analyze",
            lines=8
        )
    with gr.Row():
        submit_btn = gr.Button("Start Analysis", variant="primary")

    with gr.Tabs():
        with gr.TabItem("Main Analysis"):
            with gr.Row():
                plot1 = gr.Plot(label="Topic Distribution")
                plot2 = gr.Plot(label="Radar Chart")
        with gr.TabItem("Detailed Analysis"):
            with gr.Row():
                plot3 = gr.Plot(label="Correlation Heatmap")
                plot4 = gr.Plot(label="Topic Evolution")
        with gr.TabItem("Confidence Analysis"):
            plot5 = gr.Plot(label="Confidence Gauge")
        with gr.TabItem("Sentiment Analysis"):
            plot6 = gr.Plot(label="Sentiment Results")

    with gr.Row():
        output_json = gr.JSON(label="Detailed Analysis Output")

    submit_btn.click(
        fn=process_all_analysis,
        inputs=[text_input],
        outputs=[output_json, plot1, plot2, plot3, plot4, plot5, plot6]
    )

if __name__ == "__main__":
    demo.queue(max_size=1)
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,  # Set True if you want a public share link
        debug=True
    )