File size: 10,978 Bytes
f40c908
79d88c4
 
 
 
 
 
 
 
 
 
b1cb088
 
 
79d88c4
 
 
 
 
 
 
 
914dc02
1fb410d
b1cb088
1fb410d
b1cb088
 
 
 
914dc02
79d88c4
 
 
79f5781
914dc02
1fb410d
 
f40c908
79d88c4
f40c908
914dc02
b1cb088
79f5781
f40c908
85ad908
 
79d88c4
f40c908
b1cb088
 
f40c908
914dc02
79d88c4
430d42a
85ad908
 
b1cb088
 
85ad908
f40c908
85ad908
914dc02
85ad908
 
914dc02
85ad908
 
 
 
 
 
3c16281
1fb410d
 
 
914dc02
f40c908
 
 
 
 
0178f77
 
f40c908
914dc02
 
f40c908
0178f77
f40c908
0178f77
914dc02
 
f40c908
 
0178f77
f40c908
1fb410d
e10969c
6ab32bd
85ad908
f40c908
914dc02
85ad908
79d88c4
f40c908
79d88c4
85ad908
 
 
 
b1cb088
 
 
 
 
 
 
 
 
 
 
 
 
79d88c4
 
6ee08fc
1fb410d
 
 
 
f40c908
1fb410d
 
 
 
 
 
f40c908
85ad908
f40c908
1fb410d
 
 
 
 
 
 
85ad908
1fb410d
f40c908
 
 
e10969c
1fb410d
79d88c4
85ad908
 
79d88c4
f40c908
 
 
79d88c4
1fb410d
 
79f5781
1fb410d
 
 
 
 
 
f40c908
1fb410d
f40c908
 
85ad908
 
1fb410d
 
 
f40c908
 
1fb410d
f40c908
 
 
b1cb088
1fb410d
79d88c4
1fb410d
612b064
b1cb088
 
f40c908
 
 
b1cb088
f40c908
b1cb088
 
 
 
1fb410d
f40c908
 
 
1fb410d
 
f40c908
 
 
 
6ee08fc
f40c908
79d88c4
1fb410d
f40c908
 
 
1fb410d
b1cb088
 
 
f40c908
b1cb088
79d88c4
1fb410d
85ad908
 
b1cb088
 
 
 
85ad908
 
f40c908
 
b1cb088
f40c908
 
b1cb088
f40c908
79d88c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os, math, torch, cv2
from PIL import Image
from omegaconf import OmegaConf
from tqdm import tqdm

from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor

from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import (
    UNetSpatioTemporalConditionModel, add_ip_adapters,
)
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage

BASE_DIR = os.path.dirname(os.path.abspath(__file__))


# ------------------------------------------------------------------
#            single image + speech  →  video-tensor generator
# ------------------------------------------------------------------
def test(
    pipe, config, wav_enc, audio_pe, audio2bucket, image_encoder,
    width, height, batch,
):
    # ---- 배치 차원 맞추기 -----------------------------------------
    for k, v in batch.items():
        if isinstance(v, torch.Tensor):
            batch[k] = v.unsqueeze(0).to(pipe.device).float()

    ref_img   = batch["ref_img"]
    clip_img  = batch["clip_images"]
    face_mask = batch["face_mask"]
    image_embeds = image_encoder(clip_img).image_embeds             # (1,1024)

    audio_feature = batch["audio_feature"]                          # (1, 80, T)
    audio_len     = int(batch["audio_len"])
    step          = int(config.step)

    window = 16_000                                                 # 1-sec chunks
    audio_prompts, last_prompts = [], []

    for i in range(0, audio_feature.shape[-1], window):
        chunk = audio_feature[:, :, i : i + window]                 # (1, 80, win)
        layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
        last   = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
        audio_prompts.append(torch.stack(layers, dim=2))            # (1, w, L, 384)
        last_prompts.append(last)

    if not audio_prompts:
        raise ValueError("[ERROR] No speech recognised in the provided audio.")

    audio_prompts = torch.cat(audio_prompts, dim=1)
    last_prompts  = torch.cat(last_prompts,  dim=1)

    # padding 규칙
    audio_prompts = torch.cat(
        [torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
         torch.zeros_like(audio_prompts[:, :6])], dim=1)
    last_prompts = torch.cat(
        [torch.zeros_like(last_prompts[:, :24]), last_prompts,
         torch.zeros_like(last_prompts[:, :26])], dim=1)

    total_tokens = audio_prompts.shape[1]
    num_chunks   = max(1, math.ceil(total_tokens / (2 * step)))

    ref_list, audio_list, uncond_list, motion_buckets = [], [], [], []

    for i in tqdm(range(num_chunks)):
        start = i * 2 * step

        # ------------ cond_clip : (1,1,10,5,384) ------------------
        clip_raw = audio_prompts[:, start : start + 10]              # (1, ≤10, L, 384)

        # ★ W-padding은 dim=1 이어야 함!
        if clip_raw.shape[1] < 10:
            pad_w = torch.zeros_like(clip_raw[:, : 10 - clip_raw.shape[1]])
            clip_raw = torch.cat([clip_raw, pad_w], dim=1)

        # ★ L-padding은 dim=2
        while clip_raw.shape[2] < 5:
            clip_raw = torch.cat([clip_raw, clip_raw[:, :, -1:]], dim=2)
        clip_raw = clip_raw[:, :, :5]                                # (1,10,5,384)

        cond_clip = clip_raw.unsqueeze(1)                            # (1,1,10,5,384)

        # ------------ bucket_clip : (1,1,50,1,384) -----------------
        bucket_raw = last_prompts[:, start : start + 50]
        if bucket_raw.shape[1] < 50:                                 # ★ dim=1
            pad_w = torch.zeros_like(bucket_raw[:, : 50 - bucket_raw.shape[1]])
            bucket_raw = torch.cat([bucket_raw, pad_w], dim=1)
        bucket_clip = bucket_raw.unsqueeze(1)                        # (1,1,50,1,384)

        motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16

        ref_list.append(ref_img[0])
        audio_list.append(audio_pe(cond_clip).squeeze(0))            # (50,1024)
        uncond_list.append(audio_pe(torch.zeros_like(cond_clip)).squeeze(0))
        motion_buckets.append(motion[0])

    # ---- Stable-Video-Diffusion 호출 ------------------------------
    video = pipe(
        ref_img, clip_img, face_mask,
        audio_list, uncond_list, motion_buckets,
        height=height, width=width,
        num_frames=len(audio_list),
        decode_chunk_size=config.decode_chunk_size,
        motion_bucket_scale=config.motion_bucket_scale,
        fps=config.fps,
        noise_aug_strength=config.noise_aug_strength,
        min_guidance_scale1=config.min_appearance_guidance_scale,
        max_guidance_scale1=config.max_appearance_guidance_scale,
        min_guidance_scale2=config.audio_guidance_scale,
        max_guidance_scale2=config.audio_guidance_scale,
        overlap=config.overlap,
        shift_offset=config.shift_offset,
        frames_per_batch=config.n_sample_frames,
        num_inference_steps=config.num_inference_steps,
        i2i_noise_strength=config.i2i_noise_strength,
    ).frames

    video = (video * 0.5 + 0.5).clamp(0, 1)
    return video.to(pipe.device).unsqueeze(0).cpu()


# ------------------------------------------------------------------
#                        Sonic  클래스
# ------------------------------------------------------------------
class Sonic:
    config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
    config      = OmegaConf.load(config_file)

    def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
        cfg                = self.config
        cfg.use_interframe = enable_interpolate_frame
        self.device        = f"cuda:{device_id}" if device_id >= 0 and torch.cuda.is_available() else "cpu"
        cfg.pretrained_model_name_or_path = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path)

        self._load_models(cfg)
        print("Sonic init done")

    # --------------------------------------------------------------
    def _load_models(self, cfg):
        dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]

        vae   = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
        sched = EulerDiscreteScheduler.from_pretrained        (cfg.pretrained_model_name_or_path, subfolder="scheduler")
        img_e = CLIPVisionModelWithProjection.from_pretrained (cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
        unet  = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
        add_ip_adapters(unet, [32], [cfg.ip_audio_scale])

        a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
        a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)

        unet.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path),          map_location="cpu"))
        a2t.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path),    map_location="cpu"))
        a2b.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path),   map_location="cpu"))

        whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
        whisper.requires_grad_(False)

        self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny"))
        self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
        if cfg.use_interframe:
            self.rife = RIFEModel(device=self.device)
            self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))

        img_e.to(dtype); vae.to(dtype); unet.to(dtype)

        self.pipe          = SonicPipeline(unet=unet, image_encoder=img_e, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
        self.image_encoder = img_e
        self.audio2token   = a2t
        self.audio2bucket  = a2b
        self.whisper       = whisper

    # --------------------------------------------------------------
    def preprocess(self, img_path: str, expand_ratio: float = 1.0):
        img = cv2.imread(img_path)
        h, w = img.shape[:2]
        _, _, faces = self.face_det(img, maxface=True)
        if faces:
            x1, y1, ww, hh = faces[0]
            return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)}
        return {"face_num": 0, "crop_bbox": None}

    # --------------------------------------------------------------
    @torch.no_grad()
    def process(
        self,
        img_path:  str,
        audio_path:str,
        out_path:  str,
        min_resolution: int = 512,
        inference_steps:int = 25,
        dynamic_scale: float = 1.0,
        keep_resolution: bool = False,
        seed: int | None = None,
    ):
        cfg = self.config
        if seed is not None: cfg.seed = seed
        cfg.num_inference_steps  = inference_steps
        cfg.motion_bucket_scale  = dynamic_scale
        seed_everything(cfg.seed)

        sample = image_audio_to_tensor(
            self.face_det, self.feature_extractor,
            img_path, audio_path,
            limit=-1, image_size=min_resolution, area=cfg.area,
        )
        if sample is None:
            return -1

        h, w = sample["ref_img"].shape[-2:]
        resolution = (f"{(Image.open(img_path).width  //2)*2}x{(Image.open(img_path).height//2)*2}"
                      if keep_resolution else f"{w}x{h}")

        video = test(
            self.pipe, cfg, self.whisper, self.audio2token,
            self.audio2bucket, self.image_encoder,
            w, h, sample,
        )

        if cfg.use_interframe:
            out = video.to(self.device)
            frames = []
            for i in tqdm(range(out.shape[2] - 1), ncols=0):
                mid = self.rife.inference(out[:, :, i], out[:, :, i + 1]).clamp(0, 1).detach()
                frames.extend([out[:, :, i], mid])
            frames.append(out[:, :, -1])
            video = torch.stack(frames, 2).cpu()

        tmp = out_path.replace(".mp4", "_noaudio.mp4")
        save_videos_grid(video, tmp, n_rows=video.shape[0], fps=cfg.fps * (2 if cfg.use_interframe else 1))
        os.system(
            f"ffmpeg -i '{tmp}' -i '{audio_path}' -s {resolution} "
            f"-vcodec libx264 -acodec aac -crf 18 -shortest '{out_path}' -y -loglevel error"
        )
        os.remove(tmp)
        return 0