Spaces:
Running
on
Zero
Running
on
Zero
Update sonic.py
Browse files
sonic.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
import os, math
|
2 |
-
import torch
|
3 |
from PIL import Image
|
4 |
from omegaconf import OmegaConf
|
5 |
from tqdm import tqdm
|
6 |
-
import cv2
|
7 |
|
8 |
from diffusers import AutoencoderKLTemporalDecoder
|
9 |
from diffusers.schedulers import EulerDiscreteScheduler
|
@@ -22,10 +20,6 @@ from src.dataset.face_align.align import AlignImage
|
|
22 |
|
23 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
|
25 |
-
# ------------------------------------------------------------------
|
26 |
-
# single image + speech → video-tensor generator
|
27 |
-
# ------------------------------------------------------------------
|
28 |
-
# …(상단 import 및 기타 정의 동일)…
|
29 |
|
30 |
# ------------------------------------------------------------------
|
31 |
# single image + speech → video-tensor generator
|
@@ -42,20 +36,20 @@ def test(
|
|
42 |
ref_img = batch["ref_img"]
|
43 |
clip_img = batch["clip_images"]
|
44 |
face_mask = batch["face_mask"]
|
45 |
-
image_embeds = image_encoder(clip_img).image_embeds
|
46 |
|
47 |
-
audio_feature = batch["audio_feature"]
|
48 |
audio_len = int(batch["audio_len"])
|
49 |
step = int(config.step)
|
50 |
|
51 |
-
window = 16_000
|
52 |
audio_prompts, last_prompts = [], []
|
53 |
|
54 |
for i in range(0, audio_feature.shape[-1], window):
|
55 |
-
chunk = audio_feature[:, :, i : i + window]
|
56 |
layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
|
57 |
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
|
58 |
-
audio_prompts.append(torch.stack(layers, dim=2))
|
59 |
last_prompts.append(last)
|
60 |
|
61 |
if not audio_prompts:
|
@@ -64,6 +58,7 @@ def test(
|
|
64 |
audio_prompts = torch.cat(audio_prompts, dim=1)
|
65 |
last_prompts = torch.cat(last_prompts, dim=1)
|
66 |
|
|
|
67 |
audio_prompts = torch.cat(
|
68 |
[torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
|
69 |
torch.zeros_like(audio_prompts[:, :6])], dim=1)
|
@@ -80,34 +75,35 @@ def test(
|
|
80 |
start = i * 2 * step
|
81 |
|
82 |
# ------------ cond_clip : (1,1,10,5,384) ------------------
|
83 |
-
clip_raw = audio_prompts[:, start : start + 10]
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
clip_raw = torch.cat([clip_raw, pad_w], dim=1)
|
87 |
|
88 |
-
# ★ L-
|
89 |
while clip_raw.shape[2] < 5:
|
90 |
clip_raw = torch.cat([clip_raw, clip_raw[:, :, -1:]], dim=2)
|
91 |
-
clip_raw = clip_raw[:, :, :5]
|
92 |
|
93 |
-
cond_clip = clip_raw.unsqueeze(1)
|
94 |
|
95 |
# ------------ bucket_clip : (1,1,50,1,384) -----------------
|
96 |
bucket_raw = last_prompts[:, start : start + 50]
|
97 |
-
if bucket_raw.shape[1] < 50:
|
98 |
-
pad_w = torch.zeros_like(bucket_raw[:, :50 - bucket_raw.shape[1]])
|
99 |
bucket_raw = torch.cat([bucket_raw, pad_w], dim=1)
|
100 |
-
bucket_clip = bucket_raw.unsqueeze(1)
|
101 |
|
102 |
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16
|
103 |
|
104 |
ref_list.append(ref_img[0])
|
105 |
-
|
106 |
-
audio_list.append(audio_pe(cond_clip).squeeze(0)) # (50,1024)
|
107 |
uncond_list.append(audio_pe(torch.zeros_like(cond_clip)).squeeze(0))
|
108 |
motion_buckets.append(motion[0])
|
109 |
|
110 |
-
# ---- Stable
|
111 |
video = pipe(
|
112 |
ref_img, clip_img, face_mask,
|
113 |
audio_list, uncond_list, motion_buckets,
|
@@ -132,20 +128,17 @@ def test(
|
|
132 |
return video.to(pipe.device).unsqueeze(0).cpu()
|
133 |
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
# ------------------------------------------------------------------
|
139 |
-
#
|
140 |
# ------------------------------------------------------------------
|
141 |
class Sonic:
|
142 |
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
|
143 |
config = OmegaConf.load(config_file)
|
144 |
|
145 |
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
|
146 |
-
cfg
|
147 |
cfg.use_interframe = enable_interpolate_frame
|
148 |
-
self.device
|
149 |
cfg.pretrained_model_name_or_path = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path)
|
150 |
|
151 |
self._load_models(cfg)
|
@@ -155,18 +148,18 @@ class Sonic:
|
|
155 |
def _load_models(self, cfg):
|
156 |
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
|
157 |
|
158 |
-
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae",
|
159 |
-
sched = EulerDiscreteScheduler
|
160 |
-
|
161 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
|
162 |
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
|
163 |
|
164 |
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
|
165 |
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
|
166 |
|
167 |
-
unet
|
168 |
-
a2t
|
169 |
-
a2b
|
170 |
|
171 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
|
172 |
whisper.requires_grad_(False)
|
@@ -177,22 +170,21 @@ class Sonic:
|
|
177 |
self.rife = RIFEModel(device=self.device)
|
178 |
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
|
179 |
|
180 |
-
|
181 |
-
m.to(dtype)
|
182 |
|
183 |
-
self.pipe = SonicPipeline(unet=unet, image_encoder=
|
184 |
-
self.image_encoder =
|
185 |
self.audio2token = a2t
|
186 |
self.audio2bucket = a2b
|
187 |
self.whisper = whisper
|
188 |
|
189 |
# --------------------------------------------------------------
|
190 |
-
def preprocess(self,
|
191 |
-
img = cv2.imread(
|
192 |
h, w = img.shape[:2]
|
193 |
-
_, _,
|
194 |
-
if
|
195 |
-
x1, y1, ww, hh =
|
196 |
return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)}
|
197 |
return {"face_num": 0, "crop_bbox": None}
|
198 |
|
@@ -200,50 +192,39 @@ class Sonic:
|
|
200 |
@torch.no_grad()
|
201 |
def process(
|
202 |
self,
|
203 |
-
|
204 |
-
audio_path:
|
205 |
-
|
206 |
min_resolution: int = 512,
|
207 |
-
inference_steps:
|
208 |
dynamic_scale: float = 1.0,
|
209 |
keep_resolution: bool = False,
|
210 |
seed: int | None = None,
|
211 |
):
|
212 |
cfg = self.config
|
213 |
-
if seed is not None:
|
214 |
-
|
215 |
-
cfg.
|
216 |
-
cfg.motion_bucket_scale = dynamic_scale
|
217 |
seed_everything(cfg.seed)
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
image_path,
|
224 |
-
audio_path,
|
225 |
-
limit=-1,
|
226 |
-
image_size=min_resolution,
|
227 |
-
area=cfg.area,
|
228 |
)
|
229 |
-
if
|
230 |
return -1
|
231 |
|
232 |
-
h, w =
|
233 |
-
resolution = (
|
234 |
-
|
235 |
-
if keep_resolution
|
236 |
-
else f"{w}x{h}"
|
237 |
-
)
|
238 |
|
239 |
-
# 비디오 프레임 생성
|
240 |
video = test(
|
241 |
self.pipe, cfg, self.whisper, self.audio2token,
|
242 |
self.audio2bucket, self.image_encoder,
|
243 |
-
|
244 |
)
|
245 |
|
246 |
-
# 중간 프레임 보간
|
247 |
if cfg.use_interframe:
|
248 |
out = video.to(self.device)
|
249 |
frames = []
|
@@ -253,12 +234,11 @@ class Sonic:
|
|
253 |
frames.append(out[:, :, -1])
|
254 |
video = torch.stack(frames, 2).cpu()
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
save_videos_grid(video, tmp_mp4, n_rows=video.shape[0], fps=cfg.fps * (2 if cfg.use_interframe else 1))
|
259 |
os.system(
|
260 |
-
f"ffmpeg -i '{
|
261 |
-
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{
|
262 |
)
|
263 |
-
os.remove(
|
264 |
return 0
|
|
|
1 |
+
import os, math, torch, cv2
|
|
|
2 |
from PIL import Image
|
3 |
from omegaconf import OmegaConf
|
4 |
from tqdm import tqdm
|
|
|
5 |
|
6 |
from diffusers import AutoencoderKLTemporalDecoder
|
7 |
from diffusers.schedulers import EulerDiscreteScheduler
|
|
|
20 |
|
21 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# ------------------------------------------------------------------
|
25 |
# single image + speech → video-tensor generator
|
|
|
36 |
ref_img = batch["ref_img"]
|
37 |
clip_img = batch["clip_images"]
|
38 |
face_mask = batch["face_mask"]
|
39 |
+
image_embeds = image_encoder(clip_img).image_embeds # (1,1024)
|
40 |
|
41 |
+
audio_feature = batch["audio_feature"] # (1, 80, T)
|
42 |
audio_len = int(batch["audio_len"])
|
43 |
step = int(config.step)
|
44 |
|
45 |
+
window = 16_000 # 1-sec chunks
|
46 |
audio_prompts, last_prompts = [], []
|
47 |
|
48 |
for i in range(0, audio_feature.shape[-1], window):
|
49 |
+
chunk = audio_feature[:, :, i : i + window] # (1, 80, win)
|
50 |
layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
|
51 |
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
|
52 |
+
audio_prompts.append(torch.stack(layers, dim=2)) # (1, w, L, 384)
|
53 |
last_prompts.append(last)
|
54 |
|
55 |
if not audio_prompts:
|
|
|
58 |
audio_prompts = torch.cat(audio_prompts, dim=1)
|
59 |
last_prompts = torch.cat(last_prompts, dim=1)
|
60 |
|
61 |
+
# padding 규칙
|
62 |
audio_prompts = torch.cat(
|
63 |
[torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
|
64 |
torch.zeros_like(audio_prompts[:, :6])], dim=1)
|
|
|
75 |
start = i * 2 * step
|
76 |
|
77 |
# ------------ cond_clip : (1,1,10,5,384) ------------------
|
78 |
+
clip_raw = audio_prompts[:, start : start + 10] # (1, ≤10, L, 384)
|
79 |
+
|
80 |
+
# ★ W-padding은 dim=1 이어야 함!
|
81 |
+
if clip_raw.shape[1] < 10:
|
82 |
+
pad_w = torch.zeros_like(clip_raw[:, : 10 - clip_raw.shape[1]])
|
83 |
clip_raw = torch.cat([clip_raw, pad_w], dim=1)
|
84 |
|
85 |
+
# ★ L-padding은 dim=2
|
86 |
while clip_raw.shape[2] < 5:
|
87 |
clip_raw = torch.cat([clip_raw, clip_raw[:, :, -1:]], dim=2)
|
88 |
+
clip_raw = clip_raw[:, :, :5] # (1,10,5,384)
|
89 |
|
90 |
+
cond_clip = clip_raw.unsqueeze(1) # (1,1,10,5,384)
|
91 |
|
92 |
# ------------ bucket_clip : (1,1,50,1,384) -----------------
|
93 |
bucket_raw = last_prompts[:, start : start + 50]
|
94 |
+
if bucket_raw.shape[1] < 50: # ★ dim=1
|
95 |
+
pad_w = torch.zeros_like(bucket_raw[:, : 50 - bucket_raw.shape[1]])
|
96 |
bucket_raw = torch.cat([bucket_raw, pad_w], dim=1)
|
97 |
+
bucket_clip = bucket_raw.unsqueeze(1) # (1,1,50,1,384)
|
98 |
|
99 |
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16
|
100 |
|
101 |
ref_list.append(ref_img[0])
|
102 |
+
audio_list.append(audio_pe(cond_clip).squeeze(0)) # (50,1024)
|
|
|
103 |
uncond_list.append(audio_pe(torch.zeros_like(cond_clip)).squeeze(0))
|
104 |
motion_buckets.append(motion[0])
|
105 |
|
106 |
+
# ---- Stable-Video-Diffusion 호출 ------------------------------
|
107 |
video = pipe(
|
108 |
ref_img, clip_img, face_mask,
|
109 |
audio_list, uncond_list, motion_buckets,
|
|
|
128 |
return video.to(pipe.device).unsqueeze(0).cpu()
|
129 |
|
130 |
|
|
|
|
|
|
|
131 |
# ------------------------------------------------------------------
|
132 |
+
# Sonic 클래스
|
133 |
# ------------------------------------------------------------------
|
134 |
class Sonic:
|
135 |
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
|
136 |
config = OmegaConf.load(config_file)
|
137 |
|
138 |
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
|
139 |
+
cfg = self.config
|
140 |
cfg.use_interframe = enable_interpolate_frame
|
141 |
+
self.device = f"cuda:{device_id}" if device_id >= 0 and torch.cuda.is_available() else "cpu"
|
142 |
cfg.pretrained_model_name_or_path = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path)
|
143 |
|
144 |
self._load_models(cfg)
|
|
|
148 |
def _load_models(self, cfg):
|
149 |
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
|
150 |
|
151 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
|
152 |
+
sched = EulerDiscreteScheduler.from_pretrained (cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
153 |
+
img_e = CLIPVisionModelWithProjection.from_pretrained (cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
|
154 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
|
155 |
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
|
156 |
|
157 |
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
|
158 |
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
|
159 |
|
160 |
+
unet.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
|
161 |
+
a2t.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu"))
|
162 |
+
a2b.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu"))
|
163 |
|
164 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
|
165 |
whisper.requires_grad_(False)
|
|
|
170 |
self.rife = RIFEModel(device=self.device)
|
171 |
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
|
172 |
|
173 |
+
img_e.to(dtype); vae.to(dtype); unet.to(dtype)
|
|
|
174 |
|
175 |
+
self.pipe = SonicPipeline(unet=unet, image_encoder=img_e, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
|
176 |
+
self.image_encoder = img_e
|
177 |
self.audio2token = a2t
|
178 |
self.audio2bucket = a2b
|
179 |
self.whisper = whisper
|
180 |
|
181 |
# --------------------------------------------------------------
|
182 |
+
def preprocess(self, img_path: str, expand_ratio: float = 1.0):
|
183 |
+
img = cv2.imread(img_path)
|
184 |
h, w = img.shape[:2]
|
185 |
+
_, _, faces = self.face_det(img, maxface=True)
|
186 |
+
if faces:
|
187 |
+
x1, y1, ww, hh = faces[0]
|
188 |
return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)}
|
189 |
return {"face_num": 0, "crop_bbox": None}
|
190 |
|
|
|
192 |
@torch.no_grad()
|
193 |
def process(
|
194 |
self,
|
195 |
+
img_path: str,
|
196 |
+
audio_path:str,
|
197 |
+
out_path: str,
|
198 |
min_resolution: int = 512,
|
199 |
+
inference_steps:int = 25,
|
200 |
dynamic_scale: float = 1.0,
|
201 |
keep_resolution: bool = False,
|
202 |
seed: int | None = None,
|
203 |
):
|
204 |
cfg = self.config
|
205 |
+
if seed is not None: cfg.seed = seed
|
206 |
+
cfg.num_inference_steps = inference_steps
|
207 |
+
cfg.motion_bucket_scale = dynamic_scale
|
|
|
208 |
seed_everything(cfg.seed)
|
209 |
|
210 |
+
sample = image_audio_to_tensor(
|
211 |
+
self.face_det, self.feature_extractor,
|
212 |
+
img_path, audio_path,
|
213 |
+
limit=-1, image_size=min_resolution, area=cfg.area,
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
+
if sample is None:
|
216 |
return -1
|
217 |
|
218 |
+
h, w = sample["ref_img"].shape[-2:]
|
219 |
+
resolution = (f"{(Image.open(img_path).width //2)*2}x{(Image.open(img_path).height//2)*2}"
|
220 |
+
if keep_resolution else f"{w}x{h}")
|
|
|
|
|
|
|
221 |
|
|
|
222 |
video = test(
|
223 |
self.pipe, cfg, self.whisper, self.audio2token,
|
224 |
self.audio2bucket, self.image_encoder,
|
225 |
+
w, h, sample,
|
226 |
)
|
227 |
|
|
|
228 |
if cfg.use_interframe:
|
229 |
out = video.to(self.device)
|
230 |
frames = []
|
|
|
234 |
frames.append(out[:, :, -1])
|
235 |
video = torch.stack(frames, 2).cpu()
|
236 |
|
237 |
+
tmp = out_path.replace(".mp4", "_noaudio.mp4")
|
238 |
+
save_videos_grid(video, tmp, n_rows=video.shape[0], fps=cfg.fps * (2 if cfg.use_interframe else 1))
|
|
|
239 |
os.system(
|
240 |
+
f"ffmpeg -i '{tmp}' -i '{audio_path}' -s {resolution} "
|
241 |
+
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{out_path}' -y -loglevel error"
|
242 |
)
|
243 |
+
os.remove(tmp)
|
244 |
return 0
|