Spaces:
Running
on
Zero
Running
on
Zero
Update sonic.py
Browse files
sonic.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
import os, math
|
|
|
2 |
from PIL import Image
|
3 |
from omegaconf import OmegaConf
|
4 |
from tqdm import tqdm
|
|
|
5 |
|
6 |
from diffusers import AutoencoderKLTemporalDecoder
|
7 |
from diffusers.schedulers import EulerDiscreteScheduler
|
@@ -9,7 +11,9 @@ from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatur
|
|
9 |
|
10 |
from src.utils.util import save_videos_grid, seed_everything
|
11 |
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
|
12 |
-
from src.models.base.unet_spatio_temporal_condition import
|
|
|
|
|
13 |
from src.pipelines.pipeline_sonic import SonicPipeline
|
14 |
from src.models.audio_adapter.audio_proj import AudioProjModel
|
15 |
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
|
@@ -18,49 +22,49 @@ from src.dataset.face_align.align import AlignImage
|
|
18 |
|
19 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
20 |
|
21 |
-
|
22 |
# ------------------------------------------------------------------
|
23 |
-
#
|
24 |
# ------------------------------------------------------------------
|
25 |
-
def test(
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
for k, v in batch.items():
|
30 |
if isinstance(v, torch.Tensor):
|
31 |
batch[k] = v.unsqueeze(0).to(pipe.device).float()
|
32 |
|
33 |
-
ref_img = batch["ref_img"]
|
34 |
clip_img = batch["clip_images"]
|
35 |
face_mask = batch["face_mask"]
|
36 |
-
image_embeds = image_encoder(clip_img).image_embeds
|
37 |
|
38 |
-
audio_feature = batch["audio_feature"]
|
39 |
-
audio_len = int(batch["audio_len"])
|
40 |
-
step =
|
41 |
|
42 |
-
#
|
43 |
-
window = 16_000
|
44 |
audio_prompts, last_prompts = [], []
|
45 |
|
46 |
for i in range(0, audio_feature.shape[-1], window):
|
47 |
-
chunk = audio_feature[:, :, i:i+window]
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
audio_prompts.append(torch.stack(
|
53 |
-
last_prompts.append(
|
54 |
|
55 |
if not audio_prompts:
|
56 |
raise ValueError("[ERROR] No speech recognised in the provided audio.")
|
57 |
|
58 |
-
audio_prompts = torch.cat(audio_prompts, dim=1)
|
59 |
-
last_prompts = torch.cat(last_prompts, dim=1)
|
60 |
|
61 |
-
#
|
62 |
audio_prompts = torch.cat(
|
63 |
-
[torch.zeros_like(audio_prompts[:, :4]),
|
64 |
audio_prompts,
|
65 |
torch.zeros_like(audio_prompts[:, :6])], dim=1)
|
66 |
last_prompts = torch.cat(
|
@@ -68,71 +72,65 @@ def test(pipe, cfg, wav_enc, audio_pe, audio2bucket, image_encoder,
|
|
68 |
last_prompts,
|
69 |
torch.zeros_like(last_prompts[:, :26])], dim=1)
|
70 |
|
|
|
71 |
total_tokens = audio_prompts.shape[1]
|
72 |
num_chunks = max(1, math.ceil(total_tokens / (2 * step)))
|
73 |
|
74 |
ref_list, audio_list, uncond_list, motion_buckets = [], [], [], []
|
75 |
|
76 |
-
|
77 |
for i in tqdm(range(num_chunks)):
|
78 |
start = i * 2 * step
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
#
|
84 |
-
|
85 |
-
clip_raw = audio_prompts[:, start:start + 10] # (1, ≤10, L, 384)
|
86 |
-
if clip_raw.shape[1] < 10: # w 패딩
|
87 |
pad_w = torch.zeros_like(clip_raw[:, :10 - clip_raw.shape[1]])
|
88 |
clip_raw = torch.cat([clip_raw, pad_w], dim=1)
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
pad_L = clip_raw[:, :, -1:].repeat(1, 1, 5 - L_now, 1)
|
94 |
clip_raw = torch.cat([clip_raw, pad_L], dim=2)
|
95 |
-
clip_raw = clip_raw[:, :, :5] # (1,10,5,384)
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
-
#
|
100 |
-
bucket_raw = last_prompts[:, start:start + 50]
|
101 |
if bucket_raw.shape[1] < 50:
|
102 |
pad_w = torch.zeros_like(bucket_raw[:, :50 - bucket_raw.shape[1]])
|
103 |
bucket_raw = torch.cat([bucket_raw, pad_w], dim=1)
|
104 |
-
|
|
|
105 |
|
106 |
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16
|
107 |
|
108 |
ref_list.append(ref_img[0])
|
109 |
-
audio_list.append(audio_pe(cond_clip).squeeze(0)[0])
|
110 |
uncond_list.append(audio_pe(torch.zeros_like(cond_clip)).squeeze(0)[0])
|
111 |
motion_buckets.append(motion[0])
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
# -------- diffusion --------------------------------------------------
|
118 |
video = pipe(
|
119 |
ref_img, clip_img, face_mask,
|
120 |
audio_list, uncond_list, motion_buckets,
|
121 |
height=height, width=width,
|
122 |
num_frames=len(audio_list),
|
123 |
-
decode_chunk_size=
|
124 |
-
motion_bucket_scale=
|
125 |
-
fps=
|
126 |
-
noise_aug_strength=
|
127 |
-
min_guidance_scale1=
|
128 |
-
max_guidance_scale1=
|
129 |
-
min_guidance_scale2=
|
130 |
-
max_guidance_scale2=
|
131 |
-
overlap=
|
132 |
-
shift_offset=
|
133 |
-
frames_per_batch=
|
134 |
-
num_inference_steps=
|
135 |
-
i2i_noise_strength=
|
136 |
).frames
|
137 |
|
138 |
video = (video * 0.5 + 0.5).clamp(0, 1)
|
@@ -140,7 +138,7 @@ def test(pipe, cfg, wav_enc, audio_pe, audio2bucket, image_encoder,
|
|
140 |
|
141 |
|
142 |
# ------------------------------------------------------------------
|
143 |
-
#
|
144 |
# ------------------------------------------------------------------
|
145 |
class Sonic:
|
146 |
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
|
@@ -159,18 +157,18 @@ class Sonic:
|
|
159 |
def _load_models(self, cfg):
|
160 |
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
|
161 |
|
162 |
-
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae",
|
163 |
-
sched = EulerDiscreteScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
164 |
-
|
165 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
|
166 |
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
|
167 |
|
168 |
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
|
169 |
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
|
170 |
|
171 |
-
unet.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path),
|
172 |
-
a2t.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path),
|
173 |
-
a2b.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path),
|
174 |
|
175 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
|
176 |
whisper.requires_grad_(False)
|
@@ -181,11 +179,11 @@ class Sonic:
|
|
181 |
self.rife = RIFEModel(device=self.device)
|
182 |
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
|
183 |
|
184 |
-
for m in (
|
185 |
m.to(dtype)
|
186 |
|
187 |
-
self.pipe = SonicPipeline(unet=unet, image_encoder=
|
188 |
-
self.image_encoder =
|
189 |
self.audio2token = a2t
|
190 |
self.audio2bucket = a2b
|
191 |
self.whisper = whisper
|
@@ -197,50 +195,72 @@ class Sonic:
|
|
197 |
_, _, bboxes = self.face_det(img, maxface=True)
|
198 |
if bboxes:
|
199 |
x1, y1, ww, hh = bboxes[0]
|
200 |
-
return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1+ww, y1+hh), expand_ratio, h, w)}
|
201 |
return {"face_num": 0, "crop_bbox": None}
|
202 |
|
203 |
# --------------------------------------------------------------
|
204 |
@torch.no_grad()
|
205 |
-
def process(
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
cfg = self.config
|
211 |
if seed is not None:
|
212 |
cfg.seed = seed
|
213 |
-
cfg.num_inference_steps
|
214 |
-
cfg.motion_bucket_scale
|
215 |
seed_everything(cfg.seed)
|
216 |
|
|
|
217 |
test_data = image_audio_to_tensor(
|
218 |
-
self.face_det,
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
221 |
)
|
222 |
if test_data is None:
|
223 |
return -1
|
224 |
|
225 |
h, w = test_data["ref_img"].shape[-2:]
|
226 |
-
resolution = (
|
227 |
-
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
231 |
|
|
|
232 |
if cfg.use_interframe:
|
233 |
out = video.to(self.device)
|
234 |
frames = []
|
235 |
-
for i in tqdm(range(out.shape[2]-1), ncols=0):
|
236 |
-
mid = self.rife.inference(out[
|
237 |
-
frames.extend([out[
|
238 |
-
frames.append(out[
|
239 |
video = torch.stack(frames, 2).cpu()
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
246 |
return 0
|
|
|
1 |
+
import os, math
|
2 |
+
import torch
|
3 |
from PIL import Image
|
4 |
from omegaconf import OmegaConf
|
5 |
from tqdm import tqdm
|
6 |
+
import cv2
|
7 |
|
8 |
from diffusers import AutoencoderKLTemporalDecoder
|
9 |
from diffusers.schedulers import EulerDiscreteScheduler
|
|
|
11 |
|
12 |
from src.utils.util import save_videos_grid, seed_everything
|
13 |
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
|
14 |
+
from src.models.base.unet_spatio_temporal_condition import (
|
15 |
+
UNetSpatioTemporalConditionModel, add_ip_adapters,
|
16 |
+
)
|
17 |
from src.pipelines.pipeline_sonic import SonicPipeline
|
18 |
from src.models.audio_adapter.audio_proj import AudioProjModel
|
19 |
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
|
|
|
22 |
|
23 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
|
|
|
25 |
# ------------------------------------------------------------------
|
26 |
+
# single image + speech → video-tensor generator
|
27 |
# ------------------------------------------------------------------
|
28 |
+
def test(
|
29 |
+
pipe, config, wav_enc, audio_pe, audio2bucket, image_encoder,
|
30 |
+
width, height, batch,
|
31 |
+
):
|
32 |
+
# ---------------- batch 차원 맞추기 -----------------------------
|
33 |
for k, v in batch.items():
|
34 |
if isinstance(v, torch.Tensor):
|
35 |
batch[k] = v.unsqueeze(0).to(pipe.device).float()
|
36 |
|
37 |
+
ref_img = batch["ref_img"] # (1,C,H,W)
|
38 |
clip_img = batch["clip_images"]
|
39 |
face_mask = batch["face_mask"]
|
40 |
+
image_embeds = image_encoder(clip_img).image_embeds # (1,1024)
|
41 |
|
42 |
+
audio_feature = batch["audio_feature"] # (1,80,T)
|
43 |
+
audio_len = int(batch["audio_len"]) # python int
|
44 |
+
step = int(config.step)
|
45 |
|
46 |
+
# ---------- window 단위 Whisper 인코딩 --------------------------
|
47 |
+
window = 16_000 # 1 초
|
48 |
audio_prompts, last_prompts = [], []
|
49 |
|
50 |
for i in range(0, audio_feature.shape[-1], window):
|
51 |
+
chunk = audio_feature[:, :, i : i + window]
|
52 |
|
53 |
+
layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
|
54 |
+
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
|
55 |
|
56 |
+
audio_prompts.append(torch.stack(layers, dim=2)) # (1,?,L,384)
|
57 |
+
last_prompts.append(last) # (1,?,1,384)
|
58 |
|
59 |
if not audio_prompts:
|
60 |
raise ValueError("[ERROR] No speech recognised in the provided audio.")
|
61 |
|
62 |
+
audio_prompts = torch.cat(audio_prompts, dim=1)
|
63 |
+
last_prompts = torch.cat(last_prompts, dim=1)
|
64 |
|
65 |
+
# ---------- 모델 입력 규칙에 맞춰 padding -----------------------
|
66 |
audio_prompts = torch.cat(
|
67 |
+
[torch.zeros_like(audio_prompts[:, :4]), # head pad
|
68 |
audio_prompts,
|
69 |
torch.zeros_like(audio_prompts[:, :6])], dim=1)
|
70 |
last_prompts = torch.cat(
|
|
|
72 |
last_prompts,
|
73 |
torch.zeros_like(last_prompts[:, :26])], dim=1)
|
74 |
|
75 |
+
# ---------- 음성 길이에 따라 chunk 횟수 산정 ---------------------
|
76 |
total_tokens = audio_prompts.shape[1]
|
77 |
num_chunks = max(1, math.ceil(total_tokens / (2 * step)))
|
78 |
|
79 |
ref_list, audio_list, uncond_list, motion_buckets = [], [], [], []
|
80 |
|
|
|
81 |
for i in tqdm(range(num_chunks)):
|
82 |
start = i * 2 * step
|
83 |
|
84 |
+
# ---------------- cond_clip (w=10,L=5) --------------------
|
85 |
+
clip_raw = audio_prompts[:, start : start + 10] # (1,≤10,L,384)
|
86 |
+
|
87 |
+
# w-pad
|
88 |
+
if clip_raw.shape[1] < 10:
|
|
|
|
|
89 |
pad_w = torch.zeros_like(clip_raw[:, :10 - clip_raw.shape[1]])
|
90 |
clip_raw = torch.cat([clip_raw, pad_w], dim=1)
|
91 |
|
92 |
+
# ★ L-pad (Whisper-tiny → L=2 → 5로 확장)
|
93 |
+
if clip_raw.shape[2] < 5:
|
94 |
+
pad_L = clip_raw[:, :, -1:].repeat(1, 1, 5 - clip_raw.shape[2], 1)
|
|
|
95 |
clip_raw = torch.cat([clip_raw, pad_L], dim=2)
|
|
|
96 |
|
97 |
+
clip_raw = clip_raw[:, :, :5] # (1,10,5,384)
|
98 |
+
cond_clip = clip_raw.unsqueeze(1) # (1,1,10,5,384)
|
99 |
|
100 |
+
# ---------------- bucket_clip (w=50,L=1) ------------------
|
101 |
+
bucket_raw = last_prompts[:, start : start + 50] # (1,≤50,1,384)
|
102 |
if bucket_raw.shape[1] < 50:
|
103 |
pad_w = torch.zeros_like(bucket_raw[:, :50 - bucket_raw.shape[1]])
|
104 |
bucket_raw = torch.cat([bucket_raw, pad_w], dim=1)
|
105 |
+
|
106 |
+
bucket_clip = bucket_raw.unsqueeze(1) # (1,1,50,1,384)
|
107 |
|
108 |
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16
|
109 |
|
110 |
ref_list.append(ref_img[0])
|
111 |
+
audio_list.append(audio_pe(cond_clip).squeeze(0)[0]) # (10,1024)
|
112 |
uncond_list.append(audio_pe(torch.zeros_like(cond_clip)).squeeze(0)[0])
|
113 |
motion_buckets.append(motion[0])
|
114 |
|
115 |
+
# ---------- Stable-Video-Diffusion 호출 -------------------------
|
|
|
|
|
|
|
|
|
116 |
video = pipe(
|
117 |
ref_img, clip_img, face_mask,
|
118 |
audio_list, uncond_list, motion_buckets,
|
119 |
height=height, width=width,
|
120 |
num_frames=len(audio_list),
|
121 |
+
decode_chunk_size=config.decode_chunk_size,
|
122 |
+
motion_bucket_scale=config.motion_bucket_scale,
|
123 |
+
fps=config.fps,
|
124 |
+
noise_aug_strength=config.noise_aug_strength,
|
125 |
+
min_guidance_scale1=config.min_appearance_guidance_scale,
|
126 |
+
max_guidance_scale1=config.max_appearance_guidance_scale,
|
127 |
+
min_guidance_scale2=config.audio_guidance_scale,
|
128 |
+
max_guidance_scale2=config.audio_guidance_scale,
|
129 |
+
overlap=config.overlap,
|
130 |
+
shift_offset=config.shift_offset,
|
131 |
+
frames_per_batch=config.n_sample_frames,
|
132 |
+
num_inference_steps=config.num_inference_steps,
|
133 |
+
i2i_noise_strength=config.i2i_noise_strength,
|
134 |
).frames
|
135 |
|
136 |
video = (video * 0.5 + 0.5).clamp(0, 1)
|
|
|
138 |
|
139 |
|
140 |
# ------------------------------------------------------------------
|
141 |
+
# Sonic class
|
142 |
# ------------------------------------------------------------------
|
143 |
class Sonic:
|
144 |
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
|
|
|
157 |
def _load_models(self, cfg):
|
158 |
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
|
159 |
|
160 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
|
161 |
+
sched = EulerDiscreteScheduler .from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
162 |
+
imgenc= CLIPVisionModelWithProjection .from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
|
163 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
|
164 |
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
|
165 |
|
166 |
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
|
167 |
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
|
168 |
|
169 |
+
unet .load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
|
170 |
+
a2t .load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu"))
|
171 |
+
a2b .load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu"))
|
172 |
|
173 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
|
174 |
whisper.requires_grad_(False)
|
|
|
179 |
self.rife = RIFEModel(device=self.device)
|
180 |
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
|
181 |
|
182 |
+
for m in (imgenc, vae, unet):
|
183 |
m.to(dtype)
|
184 |
|
185 |
+
self.pipe = SonicPipeline(unet=unet, image_encoder=imgenc, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
|
186 |
+
self.image_encoder = imgenc
|
187 |
self.audio2token = a2t
|
188 |
self.audio2bucket = a2b
|
189 |
self.whisper = whisper
|
|
|
195 |
_, _, bboxes = self.face_det(img, maxface=True)
|
196 |
if bboxes:
|
197 |
x1, y1, ww, hh = bboxes[0]
|
198 |
+
return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)}
|
199 |
return {"face_num": 0, "crop_bbox": None}
|
200 |
|
201 |
# --------------------------------------------------------------
|
202 |
@torch.no_grad()
|
203 |
+
def process(
|
204 |
+
self,
|
205 |
+
image_path: str,
|
206 |
+
audio_path: str,
|
207 |
+
output_path: str,
|
208 |
+
min_resolution: int = 512,
|
209 |
+
inference_steps: int = 25,
|
210 |
+
dynamic_scale: float = 1.0,
|
211 |
+
keep_resolution: bool = False,
|
212 |
+
seed: int | None = None,
|
213 |
+
):
|
214 |
cfg = self.config
|
215 |
if seed is not None:
|
216 |
cfg.seed = seed
|
217 |
+
cfg.num_inference_steps = inference_steps
|
218 |
+
cfg.motion_bucket_scale = dynamic_scale
|
219 |
seed_everything(cfg.seed)
|
220 |
|
221 |
+
# 이미지·오디오 → tensor
|
222 |
test_data = image_audio_to_tensor(
|
223 |
+
self.face_det,
|
224 |
+
self.feature_extractor,
|
225 |
+
image_path,
|
226 |
+
audio_path,
|
227 |
+
limit=-1,
|
228 |
+
image_size=min_resolution,
|
229 |
+
area=cfg.area,
|
230 |
)
|
231 |
if test_data is None:
|
232 |
return -1
|
233 |
|
234 |
h, w = test_data["ref_img"].shape[-2:]
|
235 |
+
resolution = (
|
236 |
+
f"{(Image.open(image_path).width // 2) * 2}x{(Image.open(image_path).height // 2) * 2}"
|
237 |
+
if keep_resolution
|
238 |
+
else f"{w}x{h}"
|
239 |
+
)
|
240 |
|
241 |
+
# 비디오 프레임 생성
|
242 |
+
video = test(
|
243 |
+
self.pipe, cfg, self.whisper, self.audio2token,
|
244 |
+
self.audio2bucket, self.image_encoder,
|
245 |
+
width=w, height=h, batch=test_data,
|
246 |
+
)
|
247 |
|
248 |
+
# 중간 프레임 보간
|
249 |
if cfg.use_interframe:
|
250 |
out = video.to(self.device)
|
251 |
frames = []
|
252 |
+
for i in tqdm(range(out.shape[2] - 1), ncols=0):
|
253 |
+
mid = self.rife.inference(out[:, :, i], out[:, :, i + 1]).clamp(0, 1).detach()
|
254 |
+
frames.extend([out[:, :, i], mid])
|
255 |
+
frames.append(out[:, :, -1])
|
256 |
video = torch.stack(frames, 2).cpu()
|
257 |
|
258 |
+
# 저장
|
259 |
+
tmp_mp4 = output_path.replace(".mp4", "_noaudio.mp4")
|
260 |
+
save_videos_grid(video, tmp_mp4, n_rows=video.shape[0], fps=cfg.fps * (2 if cfg.use_interframe else 1))
|
261 |
+
os.system(
|
262 |
+
f"ffmpeg -i '{tmp_mp4}' -i '{audio_path}' -s {resolution} "
|
263 |
+
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{output_path}' -y -loglevel error"
|
264 |
+
)
|
265 |
+
os.remove(tmp_mp4)
|
266 |
return 0
|