Spaces:
Running
on
Zero
Running
on
Zero
Update sonic.py
Browse files
sonic.py
CHANGED
@@ -20,7 +20,6 @@ from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
|
|
20 |
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
|
21 |
from src.dataset.face_align.align import AlignImage
|
22 |
|
23 |
-
|
24 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
25 |
|
26 |
def test(
|
@@ -40,43 +39,44 @@ def test(
|
|
40 |
ref_img = batch['ref_img']
|
41 |
clip_img = batch['clip_images']
|
42 |
face_mask = batch['face_mask']
|
43 |
-
image_embeds = image_encoder(
|
44 |
-
clip_img
|
45 |
-
).image_embeds
|
46 |
|
47 |
audio_feature = batch['audio_feature']
|
48 |
audio_len = batch['audio_len']
|
49 |
step = int(config.step)
|
50 |
|
51 |
-
window
|
|
|
|
|
52 |
audio_prompts = []
|
53 |
last_audio_prompts = []
|
54 |
for i in range(0, audio_feature.shape[-1], window):
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
|
|
|
58 |
audio_prompt = torch.stack(audio_prompt, dim=2)
|
59 |
audio_prompts.append(audio_prompt)
|
60 |
last_audio_prompts.append(last_audio_prompt)
|
61 |
|
62 |
audio_prompts = torch.cat(audio_prompts, dim=1)
|
63 |
-
|
64 |
-
audio_prompts =
|
|
|
65 |
|
66 |
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
|
67 |
-
last_audio_prompts = last_audio_prompts[
|
68 |
-
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[
|
69 |
-
|
70 |
|
71 |
ref_tensor_list = []
|
72 |
audio_tensor_list = []
|
73 |
uncond_audio_tensor_list = []
|
74 |
motion_buckets = []
|
75 |
-
for i in tqdm(range(audio_len//step)):
|
76 |
-
|
77 |
-
|
78 |
-
audio_clip = audio_prompts[:,i*2*step:i*2*step+10].unsqueeze(0)
|
79 |
-
audio_clip_for_bucket = last_audio_prompts[:,i*2*step:i*2*step+50].unsqueeze(0)
|
80 |
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
|
81 |
motion_bucket = motion_bucket * 16 + 16
|
82 |
motion_buckets.append(motion_bucket[0])
|
@@ -102,9 +102,9 @@ def test(
|
|
102 |
motion_bucket_scale=config.motion_bucket_scale,
|
103 |
fps=config.fps,
|
104 |
noise_aug_strength=config.noise_aug_strength,
|
105 |
-
min_guidance_scale1=config.min_appearance_guidance_scale,
|
106 |
max_guidance_scale1=config.max_appearance_guidance_scale,
|
107 |
-
min_guidance_scale2=config.audio_guidance_scale,
|
108 |
max_guidance_scale2=config.audio_guidance_scale,
|
109 |
overlap=config.overlap,
|
110 |
shift_offset=config.shift_offset,
|
@@ -113,12 +113,8 @@ def test(
|
|
113 |
i2i_noise_strength=config.i2i_noise_strength
|
114 |
).frames
|
115 |
|
116 |
-
|
117 |
-
# Concat it with pose tensor
|
118 |
-
# pose_tensor = torch.stack(pose_tensor_list,1).unsqueeze(0)
|
119 |
-
video = (video*0.5 + 0.5).clamp(0, 1)
|
120 |
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
|
121 |
-
|
122 |
return video
|
123 |
|
124 |
|
@@ -151,14 +147,24 @@ class Sonic():
|
|
151 |
config.pretrained_model_name_or_path,
|
152 |
subfolder="image_encoder",
|
153 |
variant="fp16")
|
|
|
154 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
155 |
config.pretrained_model_name_or_path,
|
156 |
subfolder="unet",
|
157 |
variant="fp16")
|
|
|
158 |
add_ip_adapters(unet, [32], [config.ip_audio_scale])
|
159 |
|
160 |
-
audio2token = AudioProjModel(
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
|
164 |
audio2token_checkpoint_path = os.path.join(BASE_DIR, config.audio2token_checkpoint_path)
|
@@ -179,7 +185,6 @@ class Sonic():
|
|
179 |
strict=True,
|
180 |
)
|
181 |
|
182 |
-
|
183 |
if config.weight_dtype == "fp16":
|
184 |
weight_dtype = torch.float16
|
185 |
elif config.weight_dtype == "fp32":
|
@@ -188,23 +193,21 @@ class Sonic():
|
|
188 |
weight_dtype = torch.bfloat16
|
189 |
else:
|
190 |
raise ValueError(
|
191 |
-
f"Do not support weight dtype: {config.weight_dtype}
|
192 |
)
|
193 |
|
194 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
|
195 |
-
|
196 |
whisper.requires_grad_(False)
|
197 |
|
198 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
|
199 |
|
200 |
-
det_path = os.path.join(BASE_DIR,
|
201 |
self.face_det = AlignImage(device, det_path=det_path)
|
202 |
if config.use_interframe:
|
203 |
rife = RIFEModel(device=device)
|
204 |
rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
|
205 |
self.rife = rife
|
206 |
|
207 |
-
|
208 |
image_encoder.to(weight_dtype)
|
209 |
vae.to(weight_dtype)
|
210 |
unet.to(weight_dtype)
|
@@ -217,7 +220,6 @@ class Sonic():
|
|
217 |
)
|
218 |
pipe = pipe.to(device=device, dtype=weight_dtype)
|
219 |
|
220 |
-
|
221 |
self.pipe = pipe
|
222 |
self.whisper = whisper
|
223 |
self.audio2token = audio2token
|
@@ -225,16 +227,15 @@ class Sonic():
|
|
225 |
self.image_encoder = image_encoder
|
226 |
self.device = device
|
227 |
|
228 |
-
print('init done')
|
229 |
|
230 |
|
231 |
-
def preprocess(self,
|
232 |
-
image_path, expand_ratio=1.0):
|
233 |
face_image = cv2.imread(image_path)
|
234 |
h, w = face_image.shape[:2]
|
235 |
_, _, bboxes = self.face_det(face_image, maxface=True)
|
236 |
face_num = len(bboxes)
|
237 |
-
|
238 |
if face_num > 0:
|
239 |
x1, y1, ww, hh = bboxes[0]
|
240 |
x2, y2 = x1 + ww, y1 + hh
|
@@ -246,10 +247,7 @@ class Sonic():
|
|
246 |
'crop_bbox': bbox_s,
|
247 |
}
|
248 |
|
249 |
-
def crop_image(self,
|
250 |
-
input_image_path,
|
251 |
-
output_image_path,
|
252 |
-
crop_bbox):
|
253 |
face_image = cv2.imread(input_image_path)
|
254 |
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
|
255 |
cv2.imwrite(output_image_path, crop_image)
|
@@ -273,27 +271,34 @@ class Sonic():
|
|
273 |
audio2bucket = self.audio2bucket
|
274 |
image_encoder = self.image_encoder
|
275 |
|
276 |
-
# specific parameters
|
277 |
if seed:
|
278 |
config.seed = seed
|
279 |
-
|
280 |
config.num_inference_steps = inference_steps
|
281 |
-
|
282 |
config.motion_bucket_scale = dynamic_scale
|
283 |
-
|
284 |
seed_everything(config.seed)
|
285 |
|
286 |
video_path = output_path.replace('.mp4', '_noaudio.mp4')
|
287 |
audio_video_path = output_path
|
288 |
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
-
test_data = image_audio_to_tensor(self.face_det, self.feature_extractor, image_path, audio_path, limit=config.frame_num, image_size=min_resolution, area=config.area)
|
293 |
if test_data is None:
|
294 |
return -1
|
|
|
295 |
height, width = test_data['ref_img'].shape[-2:]
|
296 |
if keep_resolution:
|
|
|
|
|
297 |
resolution = f'{raw_w//2*2}x{raw_h//2*2}'
|
298 |
else:
|
299 |
resolution = f'{width}x{height}'
|
@@ -308,23 +313,23 @@ class Sonic():
|
|
308 |
width=width,
|
309 |
height=height,
|
310 |
batch=test_data,
|
311 |
-
|
312 |
|
|
|
313 |
if config.use_interframe:
|
314 |
rife = self.rife
|
315 |
out = video.to(device)
|
316 |
results = []
|
317 |
video_len = out.shape[2]
|
318 |
-
for idx in tqdm(range(video_len-1), ncols=0):
|
319 |
I1 = out[:, :, idx]
|
320 |
-
I2 = out[:, :, idx+1]
|
321 |
middle = rife.inference(I1, I2).clamp(0, 1).detach()
|
322 |
results.append(out[:, :, idx])
|
323 |
results.append(middle)
|
324 |
-
results.append(out[:, :, video_len-1])
|
325 |
video = torch.stack(results, 2).cpu()
|
326 |
|
327 |
-
save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * 2 if config.use_interframe else
|
328 |
os.system(f"ffmpeg -i '{video_path}' -i '{audio_path}' -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest '{audio_video_path}' -y; rm '{video_path}'")
|
329 |
return 0
|
330 |
-
|
|
|
20 |
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
|
21 |
from src.dataset.face_align.align import AlignImage
|
22 |
|
|
|
23 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
|
25 |
def test(
|
|
|
39 |
ref_img = batch['ref_img']
|
40 |
clip_img = batch['clip_images']
|
41 |
face_mask = batch['face_mask']
|
42 |
+
image_embeds = image_encoder(clip_img).image_embeds
|
|
|
|
|
43 |
|
44 |
audio_feature = batch['audio_feature']
|
45 |
audio_len = batch['audio_len']
|
46 |
step = int(config.step)
|
47 |
|
48 |
+
# 여기서 window=3000 이었던 값을 더 크게 바꿔 최대 60초를 처리할 수 있게 함
|
49 |
+
# whisper-tiny는 기본 16kHz 샘플링이므로, 16,000단위면 대략 1초씩 끊게 됨
|
50 |
+
window = 16000 # (1초 단위로 chunk 처리)
|
51 |
audio_prompts = []
|
52 |
last_audio_prompts = []
|
53 |
for i in range(0, audio_feature.shape[-1], window):
|
54 |
+
audio_clip_chunk = audio_feature[:, :, i:i+window]
|
55 |
+
# Whisper encoder
|
56 |
+
audio_prompt = wav_enc.encoder(audio_clip_chunk, output_hidden_states=True).hidden_states
|
57 |
+
last_audio_prompt = wav_enc.encoder(audio_clip_chunk).last_hidden_state
|
58 |
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
|
59 |
+
|
60 |
audio_prompt = torch.stack(audio_prompt, dim=2)
|
61 |
audio_prompts.append(audio_prompt)
|
62 |
last_audio_prompts.append(last_audio_prompt)
|
63 |
|
64 |
audio_prompts = torch.cat(audio_prompts, dim=1)
|
65 |
+
# audio_len*2 부분은 모델 내부 로직에 따라 필요한 padding 처리
|
66 |
+
audio_prompts = audio_prompts[:, :audio_len*2]
|
67 |
+
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:, :4]), audio_prompts, torch.zeros_like(audio_prompts[:, :6])], 1)
|
68 |
|
69 |
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
|
70 |
+
last_audio_prompts = last_audio_prompts[:, :audio_len*2]
|
71 |
+
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[:, :24]), last_audio_prompts, torch.zeros_like(last_audio_prompts[:, :26])], 1)
|
|
|
72 |
|
73 |
ref_tensor_list = []
|
74 |
audio_tensor_list = []
|
75 |
uncond_audio_tensor_list = []
|
76 |
motion_buckets = []
|
77 |
+
for i in tqdm(range(audio_len // step)):
|
78 |
+
audio_clip = audio_prompts[:, i*2*step : i*2*step + 10].unsqueeze(0)
|
79 |
+
audio_clip_for_bucket = last_audio_prompts[:, i*2*step : i*2*step + 50].unsqueeze(0)
|
|
|
|
|
80 |
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
|
81 |
motion_bucket = motion_bucket * 16 + 16
|
82 |
motion_buckets.append(motion_bucket[0])
|
|
|
102 |
motion_bucket_scale=config.motion_bucket_scale,
|
103 |
fps=config.fps,
|
104 |
noise_aug_strength=config.noise_aug_strength,
|
105 |
+
min_guidance_scale1=config.min_appearance_guidance_scale,
|
106 |
max_guidance_scale1=config.max_appearance_guidance_scale,
|
107 |
+
min_guidance_scale2=config.audio_guidance_scale,
|
108 |
max_guidance_scale2=config.audio_guidance_scale,
|
109 |
overlap=config.overlap,
|
110 |
shift_offset=config.shift_offset,
|
|
|
113 |
i2i_noise_strength=config.i2i_noise_strength
|
114 |
).frames
|
115 |
|
116 |
+
video = (video * 0.5 + 0.5).clamp(0, 1)
|
|
|
|
|
|
|
117 |
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
|
|
|
118 |
return video
|
119 |
|
120 |
|
|
|
147 |
config.pretrained_model_name_or_path,
|
148 |
subfolder="image_encoder",
|
149 |
variant="fp16")
|
150 |
+
|
151 |
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
152 |
config.pretrained_model_name_or_path,
|
153 |
subfolder="unet",
|
154 |
variant="fp16")
|
155 |
+
|
156 |
add_ip_adapters(unet, [32], [config.ip_audio_scale])
|
157 |
|
158 |
+
audio2token = AudioProjModel(
|
159 |
+
seq_len=10, blocks=5, channels=384,
|
160 |
+
intermediate_dim=1024, output_dim=1024, context_tokens=32
|
161 |
+
).to(device)
|
162 |
+
|
163 |
+
audio2bucket = Audio2bucketModel(
|
164 |
+
seq_len=50, blocks=1, channels=384,
|
165 |
+
clip_channels=1024, intermediate_dim=1024, output_dim=1,
|
166 |
+
context_tokens=2
|
167 |
+
).to(device)
|
168 |
|
169 |
unet_checkpoint_path = os.path.join(BASE_DIR, config.unet_checkpoint_path)
|
170 |
audio2token_checkpoint_path = os.path.join(BASE_DIR, config.audio2token_checkpoint_path)
|
|
|
185 |
strict=True,
|
186 |
)
|
187 |
|
|
|
188 |
if config.weight_dtype == "fp16":
|
189 |
weight_dtype = torch.float16
|
190 |
elif config.weight_dtype == "fp32":
|
|
|
193 |
weight_dtype = torch.bfloat16
|
194 |
else:
|
195 |
raise ValueError(
|
196 |
+
f"Do not support weight dtype: {config.weight_dtype}"
|
197 |
)
|
198 |
|
199 |
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
|
|
|
200 |
whisper.requires_grad_(False)
|
201 |
|
202 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
|
203 |
|
204 |
+
det_path = os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt')
|
205 |
self.face_det = AlignImage(device, det_path=det_path)
|
206 |
if config.use_interframe:
|
207 |
rife = RIFEModel(device=device)
|
208 |
rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
|
209 |
self.rife = rife
|
210 |
|
|
|
211 |
image_encoder.to(weight_dtype)
|
212 |
vae.to(weight_dtype)
|
213 |
unet.to(weight_dtype)
|
|
|
220 |
)
|
221 |
pipe = pipe.to(device=device, dtype=weight_dtype)
|
222 |
|
|
|
223 |
self.pipe = pipe
|
224 |
self.whisper = whisper
|
225 |
self.audio2token = audio2token
|
|
|
227 |
self.image_encoder = image_encoder
|
228 |
self.device = device
|
229 |
|
230 |
+
print('Sonic init done')
|
231 |
|
232 |
|
233 |
+
def preprocess(self, image_path, expand_ratio=1.0):
|
|
|
234 |
face_image = cv2.imread(image_path)
|
235 |
h, w = face_image.shape[:2]
|
236 |
_, _, bboxes = self.face_det(face_image, maxface=True)
|
237 |
face_num = len(bboxes)
|
238 |
+
bbox_s = None
|
239 |
if face_num > 0:
|
240 |
x1, y1, ww, hh = bboxes[0]
|
241 |
x2, y2 = x1 + ww, y1 + hh
|
|
|
247 |
'crop_bbox': bbox_s,
|
248 |
}
|
249 |
|
250 |
+
def crop_image(self, input_image_path, output_image_path, crop_bbox):
|
|
|
|
|
|
|
251 |
face_image = cv2.imread(input_image_path)
|
252 |
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
|
253 |
cv2.imwrite(output_image_path, crop_image)
|
|
|
271 |
audio2bucket = self.audio2bucket
|
272 |
image_encoder = self.image_encoder
|
273 |
|
|
|
274 |
if seed:
|
275 |
config.seed = seed
|
|
|
276 |
config.num_inference_steps = inference_steps
|
|
|
277 |
config.motion_bucket_scale = dynamic_scale
|
|
|
278 |
seed_everything(config.seed)
|
279 |
|
280 |
video_path = output_path.replace('.mp4', '_noaudio.mp4')
|
281 |
audio_video_path = output_path
|
282 |
|
283 |
+
# limit=config.frame_num 대신 오디오 전체를 쓰도록 수정
|
284 |
+
# 만약 config.frame_num이 작아 2초 제한을 걸고 있었다면 제거해야 함
|
285 |
+
test_data = image_audio_to_tensor(
|
286 |
+
self.face_det,
|
287 |
+
self.feature_extractor,
|
288 |
+
image_path,
|
289 |
+
audio_path,
|
290 |
+
limit=-1, # -1 등으로 제한 해제
|
291 |
+
image_size=min_resolution,
|
292 |
+
area=config.area
|
293 |
+
)
|
294 |
|
|
|
295 |
if test_data is None:
|
296 |
return -1
|
297 |
+
|
298 |
height, width = test_data['ref_img'].shape[-2:]
|
299 |
if keep_resolution:
|
300 |
+
imSrc_ = Image.open(image_path).convert('RGB')
|
301 |
+
raw_w, raw_h = imSrc_.size
|
302 |
resolution = f'{raw_w//2*2}x{raw_h//2*2}'
|
303 |
else:
|
304 |
resolution = f'{width}x{height}'
|
|
|
313 |
width=width,
|
314 |
height=height,
|
315 |
batch=test_data,
|
316 |
+
)
|
317 |
|
318 |
+
# 중간프레임 보간 사용시
|
319 |
if config.use_interframe:
|
320 |
rife = self.rife
|
321 |
out = video.to(device)
|
322 |
results = []
|
323 |
video_len = out.shape[2]
|
324 |
+
for idx in tqdm(range(video_len - 1), ncols=0):
|
325 |
I1 = out[:, :, idx]
|
326 |
+
I2 = out[:, :, idx + 1]
|
327 |
middle = rife.inference(I1, I2).clamp(0, 1).detach()
|
328 |
results.append(out[:, :, idx])
|
329 |
results.append(middle)
|
330 |
+
results.append(out[:, :, video_len - 1])
|
331 |
video = torch.stack(results, 2).cpu()
|
332 |
|
333 |
+
save_videos_grid(video, video_path, n_rows=video.shape[0], fps=config.fps * (2 if config.use_interframe else 1))
|
334 |
os.system(f"ffmpeg -i '{video_path}' -i '{audio_path}' -s {resolution} -vcodec libx264 -acodec aac -crf 18 -shortest '{audio_video_path}' -y; rm '{video_path}'")
|
335 |
return 0
|
|