Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,220 Bytes
c260fe0 f40c908 79d88c4 c260fe0 79d88c4 c260fe0 79d88c4 c260fe0 79d88c4 c260fe0 79d88c4 c260fe0 79d88c4 914dc02 1fb410d 5d6304b 1fb410d 5d6304b 79d88c4 5d6304b 85ad908 5d6304b 3c16281 5d6304b 1fb410d 5d6304b f40c908 5d6304b 0178f77 5d6304b 0178f77 5d6304b 0178f77 5d6304b 1fb410d 5d6304b 85ad908 5d6304b 85ad908 5d6304b 79d88c4 5d6304b 1fb410d 5d6304b 1fb410d c260fe0 1fb410d c260fe0 f40c908 85ad908 c260fe0 1fb410d c260fe0 5d6304b 1fb410d 85ad908 1fb410d 5d6304b 1fb410d 79d88c4 5d6304b 79d88c4 5d6304b 79d88c4 5d6304b 79f5781 1fb410d 5d6304b 1fb410d 5d6304b 1fb410d 5d6304b f40c908 5d6304b 79d88c4 5d6304b 612b064 5d6304b 1fb410d f40c908 5d6304b 1fb410d f40c908 5d6304b 6ee08fc 5d6304b 1fb410d 5d6304b f40c908 1fb410d 5d6304b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
sonic.py – 2025-05 hot-fix
주요 수정
• config.pretrained_model_name_or_path 가 실제 폴더인지 확인
• 없다면 huggingface_hub.snapshot_download 로 자동 다운로드
• 경로가 준비된 뒤 모델 로드 진행
"""
import os, math, torch, cv2
from PIL import Image
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from huggingface_hub import snapshot_download, hf_hub_download
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
# ------------------------------
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
HF_STABLE_REPO = "stabilityai/stable-video-diffusion-img2vid-xt"
LOCAL_STABLE_DIR = os.path.join(BASE_DIR, "checkpoints", "stable-video-diffusion-img2vid-xt")
# ------------------------------------------------------------------
# single image + speech → video tensor
# ------------------------------------------------------------------
def test(pipe, cfg, wav_enc, audio_pe, audio2bucket, img_enc,
width, height, batch):
# --- batch 차원 맞추기 ------------------------------------------
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).float().to(pipe.device)
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
img_emb = img_enc(clip_img).image_embeds # (1,1024)
audio_feat = batch['audio_feature'] # (1,80,T)
audio_len = int(batch['audio_len'])
step = max(1, int(cfg.step)) # 안전 보정
window = 16_000 # 1-초 chunk
prompt_list, last_list = [], []
for i in range(0, audio_feat.shape[-1], window):
chunk = audio_feat[:, :, i:i+window]
hs = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
prompt_list.append(torch.stack(hs, 2)) # (1,80,L,384)
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
last_list.append(last) # (1,80,1,384)
if not prompt_list:
raise ValueError("❌ No speech recognised in audio.")
audio_prompts = torch.cat(prompt_list, 1) # (1,80,*L,384)
last_prompts = torch.cat(last_list, 1) # (1,80,*1,384)
# pad 규칙 (모델 원 논문과 동일)
audio_prompts = torch.cat([ torch.zeros_like(audio_prompts[:,:4]),
audio_prompts,
torch.zeros_like(audio_prompts[:,:6]) ], 1)
last_prompts = torch.cat([ torch.zeros_like(last_prompts[:,:24]),
last_prompts,
torch.zeros_like(last_prompts[:,:26]) ], 1)
# --------------------------------------------------------------
total_tok = audio_prompts.shape[1]
n_chunks = max(1, math.ceil(total_tok / (2*step)))
ref_L, aud_L, uncond_L, buckets = [], [], [], []
for i in tqdm(range(n_chunks), ncols=0):
st = i * 2 * step
# ① 조건 오디오 토큰(pad → 10×5×384)
cond = audio_prompts[:, st:st+10] # (1,80,10,384) → (1,10,8,384)?
cond = cond[:, :10] # f = 10
cond = cond.permute(0,2,1,3) # (1,10,80,384)
cond = cond.reshape(1, 10, 10, 5, 384) # ★ w=10, b=5 (zero-pad auto)
# ② bucket 추정용 토큰
buck = last_prompts[:, st:st+50] # (1,80,50,384)
if buck.shape[1] < 50:
pad = torch.zeros(1, 50-buck.shape[1], *buck.shape[2:], device=buck.device)
buck = torch.cat([buck, pad], 1)
buck = buck[:, :50].permute(0,2,1,3).reshape(1, 50, 10, 5, 384)
motion = audio2bucket(buck, img_emb) * 16 + 16
ref_L.append(ref_img[0])
aud_L.append(audio_pe(cond).squeeze(0)) # (10,1024)
uncond_L.append(audio_pe(torch.zeros_like(cond)).squeeze(0))
buckets.append(motion[0])
# -------------- diffusion -------------------------------------------------
vid = pipe(
ref_img, clip_img, face_mask,
aud_L, uncond_L, buckets,
height=height, width=width,
num_frames=len(aud_L),
decode_chunk_size=cfg.decode_chunk_size,
motion_bucket_scale=cfg.motion_bucket_scale,
fps=cfg.fps,
noise_aug_strength=cfg.noise_aug_strength,
min_guidance_scale1=cfg.min_appearance_guidance_scale,
max_guidance_scale1=cfg.max_appearance_guidance_scale,
min_guidance_scale2=cfg.audio_guidance_scale,
max_guidance_scale2=cfg.audio_guidance_scale,
overlap=cfg.overlap,
shift_offset=cfg.shift_offset,
frames_per_batch=cfg.n_sample_frames,
num_inference_steps=cfg.num_inference_steps,
i2i_noise_strength=cfg.i2i_noise_strength,
).frames
return (vid*0.5+0.5).clamp(0,1).to(pipe.device).unsqueeze(0).cpu()
# ------------------------------------------------------------------
# Sonic wrapper
# ------------------------------------------------------------------
class Sonic:
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
cfg = self.config
cfg.use_interframe = enable_interpolate_frame
self.device = f"cuda:{device_id}" if torch.cuda.is_available() and device_id >= 0 else "cpu"
# ----------- ✨ [NEW] pretrained 모델 폴더 확보 ----------------------
if not os.path.isdir(LOCAL_STABLE_DIR) or not os.path.isfile(os.path.join(LOCAL_STABLE_DIR, "vae", "config.json")):
print("[INFO] 1st-run – downloading base model (~2 GB)…")
snapshot_download(repo_id=HF_STABLE_REPO,
local_dir=LOCAL_STABLE_DIR,
resume_download=True,
local_dir_use_symlinks=False)
cfg.pretrained_model_name_or_path = LOCAL_STABLE_DIR
# ------------------------------------------------------------------
self._load_models(cfg)
print("Sonic init done")
# model-loader (unchanged, but with tiny clean-ups) ------------------------
def _load_models(self, cfg):
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
sched = EulerDiscreteScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
img_enc = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
self.audio2token = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
self.audio2bucket = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
unet.load_state_dict (torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
self.audio2token.load_state_dict (torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu"))
self.audio2bucket.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu"))
self.whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
self.whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny"))
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
if cfg.use_interframe:
self.rife = RIFEModel(device=self.device); self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
for m in (img_enc, vae, unet): m.to(dtype)
self.pipe = SonicPipeline(unet=unet, image_encoder=img_enc, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
self.image_encoder = img_enc
# ------------------------------------------------------------------
def preprocess(self, img_path, expand_ratio=1.0):
img = cv2.imread(img_path)
_, _, boxes = self.face_det(img, maxface=True)
if boxes:
x,y,w,h = boxes[0]; return {"face_num":1,"crop_bbox":process_bbox((x,y,x+w,y+h),expand_ratio,*img.shape[:2])}
return {"face_num":0,"crop_bbox":None}
# ------------------------------------------------------------------
@torch.no_grad()
def process(self, img_path, wav_path, out_path,
min_resolution=512, inference_steps=25,
dynamic_scale=1.0, keep_resolution=False, seed=None):
cfg = self.config
if seed is not None: cfg.seed = seed
cfg.num_inference_steps = inference_steps
cfg.motion_bucket_scale = dynamic_scale
seed_everything(cfg.seed)
sample = image_audio_to_tensor(
self.face_det, self.feature_extractor,
img_path, wav_path, limit=-1,
image_size=min_resolution, area=cfg.area,
)
if sample is None: return -1
h,w = sample['ref_img'].shape[-2:]
resolution = (f"{Image.open(img_path).width//2*2}x{Image.open(img_path).height//2*2}"
if keep_resolution else f"{w}x{h}")
video = test(self.pipe, cfg, self.whisper, self.audio2token,
self.audio2bucket, self.image_encoder, w, h, sample)
if cfg.use_interframe: # RIFE interpolation
out = video.to(self.device); frames=[]
for i in tqdm(range(out.shape[2]-1), ncols=0):
mid = self.rife.inference(out[:,:,i], out[:,:,i+1]).clamp(0,1)
frames += [out[:,:,i], mid]
frames.append(out[:,:,-1]); video = torch.stack(frames,2).cpu()
tmp = out_path.replace(".mp4","_noaudio.mp4")
save_videos_grid(video, tmp, n_rows=video.shape[0], fps=cfg.fps*(2 if cfg.use_interframe else 1))
os.system(f"ffmpeg -i '{tmp}' -i '{wav_path}' -s {resolution} "
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{out_path}' -y -loglevel error")
os.remove(tmp); return 0
|