Spaces:
Running
on
Zero
Running
on
Zero
Update sonic.py
Browse files
sonic.py
CHANGED
@@ -1,20 +1,23 @@
|
|
|
|
|
|
|
|
1 |
import os, math, torch, cv2
|
|
|
2 |
from PIL import Image
|
3 |
from omegaconf import OmegaConf
|
4 |
from tqdm import tqdm
|
5 |
-
|
6 |
from diffusers import AutoencoderKLTemporalDecoder
|
7 |
from diffusers.schedulers import EulerDiscreteScheduler
|
8 |
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
|
9 |
|
10 |
from src.utils.util import save_videos_grid, seed_everything
|
11 |
-
from src.dataset.test_preprocess import
|
12 |
from src.models.base.unet_spatio_temporal_condition import (
|
13 |
UNetSpatioTemporalConditionModel, add_ip_adapters,
|
14 |
)
|
15 |
-
from src.pipelines.pipeline_sonic import SonicPipeline
|
16 |
from src.models.audio_adapter.audio_proj import AudioProjModel
|
17 |
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
|
|
|
18 |
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
|
19 |
from src.dataset.face_align.align import AlignImage
|
20 |
|
@@ -22,223 +25,189 @@ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
22 |
|
23 |
|
24 |
# ------------------------------------------------------------------
|
25 |
-
#
|
26 |
# ------------------------------------------------------------------
|
27 |
-
def test(
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# ---- 배치 차원 맞추기 -----------------------------------------
|
32 |
for k, v in batch.items():
|
33 |
if isinstance(v, torch.Tensor):
|
34 |
-
batch[k] = v.unsqueeze(0).to(pipe.device)
|
35 |
-
|
36 |
-
ref_img = batch["ref_img"]
|
37 |
-
clip_img = batch["clip_images"]
|
38 |
-
face_mask = batch["face_mask"]
|
39 |
-
image_embeds = image_encoder(clip_img).image_embeds # (1,1024)
|
40 |
-
|
41 |
-
audio_feature = batch["audio_feature"] # (1, 80, T)
|
42 |
-
audio_len = int(batch["audio_len"])
|
43 |
-
step = int(config.step)
|
44 |
-
|
45 |
-
window = 16_000 # 1-sec chunks
|
46 |
-
audio_prompts, last_prompts = [], []
|
47 |
-
|
48 |
-
for i in range(0, audio_feature.shape[-1], window):
|
49 |
-
chunk = audio_feature[:, :, i : i + window] # (1, 80, win)
|
50 |
-
layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
|
51 |
-
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
|
52 |
-
audio_prompts.append(torch.stack(layers, dim=2)) # (1, w, L, 384)
|
53 |
-
last_prompts.append(last)
|
54 |
-
|
55 |
-
if not audio_prompts:
|
56 |
-
raise ValueError("[ERROR] No speech recognised in the provided audio.")
|
57 |
-
|
58 |
-
audio_prompts = torch.cat(audio_prompts, dim=1)
|
59 |
-
last_prompts = torch.cat(last_prompts, dim=1)
|
60 |
-
|
61 |
-
# padding 규칙
|
62 |
-
audio_prompts = torch.cat(
|
63 |
-
[torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
|
64 |
-
torch.zeros_like(audio_prompts[:, :6])], dim=1)
|
65 |
-
last_prompts = torch.cat(
|
66 |
-
[torch.zeros_like(last_prompts[:, :24]), last_prompts,
|
67 |
-
torch.zeros_like(last_prompts[:, :26])], dim=1)
|
68 |
-
|
69 |
-
total_tokens = audio_prompts.shape[1]
|
70 |
-
num_chunks = max(1, math.ceil(total_tokens / (2 * step)))
|
71 |
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
clip_raw = torch.cat([clip_raw, clip_raw[:, :, -1:]], dim=2)
|
88 |
-
clip_raw = clip_raw[:, :, :5] # (1,10,5,384)
|
89 |
|
90 |
-
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
ref_img, clip_img, face_mask,
|
109 |
-
|
110 |
height=height, width=width,
|
111 |
-
num_frames=len(
|
112 |
-
decode_chunk_size=
|
113 |
-
motion_bucket_scale=
|
114 |
-
fps=
|
115 |
-
noise_aug_strength=
|
116 |
-
min_guidance_scale1=
|
117 |
-
max_guidance_scale1=
|
118 |
-
min_guidance_scale2=
|
119 |
-
max_guidance_scale2=
|
120 |
-
overlap=
|
121 |
-
shift_offset=
|
122 |
-
frames_per_batch=
|
123 |
-
num_inference_steps=
|
124 |
-
i2i_noise_strength=
|
125 |
).frames
|
126 |
|
127 |
-
|
128 |
-
return video.to(pipe.device).unsqueeze(0).cpu()
|
129 |
|
130 |
|
131 |
# ------------------------------------------------------------------
|
132 |
-
#
|
133 |
# ------------------------------------------------------------------
|
134 |
class Sonic:
|
135 |
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
|
136 |
config = OmegaConf.load(config_file)
|
137 |
|
138 |
-
def __init__(self, device_id
|
139 |
cfg = self.config
|
140 |
cfg.use_interframe = enable_interpolate_frame
|
141 |
-
self.device = f"cuda:{device_id}" if
|
142 |
cfg.pretrained_model_name_or_path = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path)
|
143 |
|
144 |
self._load_models(cfg)
|
145 |
print("Sonic init done")
|
146 |
|
147 |
-
#
|
148 |
def _load_models(self, cfg):
|
149 |
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
|
150 |
|
151 |
-
vae
|
152 |
-
sched = EulerDiscreteScheduler.from_pretrained
|
153 |
-
|
154 |
-
unet
|
155 |
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
|
156 |
|
157 |
-
|
158 |
-
|
159 |
|
160 |
-
unet.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
|
165 |
-
whisper.requires_grad_(False)
|
166 |
|
167 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny"))
|
168 |
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
|
169 |
if cfg.use_interframe:
|
170 |
-
self.rife = RIFEModel(device=self.device)
|
171 |
-
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
|
172 |
-
|
173 |
-
img_e.to(dtype); vae.to(dtype); unet.to(dtype)
|
174 |
|
175 |
-
|
176 |
-
self.image_encoder =
|
177 |
-
self.
|
178 |
-
self.audio2bucket = a2b
|
179 |
-
self.whisper = whisper
|
180 |
|
181 |
-
#
|
182 |
-
def preprocess(self, img_path
|
183 |
img = cv2.imread(img_path)
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)}
|
189 |
-
return {"face_num": 0, "crop_bbox": None}
|
190 |
|
191 |
-
#
|
192 |
@torch.no_grad()
|
193 |
-
def process(
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
out_path: str,
|
198 |
-
min_resolution: int = 512,
|
199 |
-
inference_steps:int = 25,
|
200 |
-
dynamic_scale: float = 1.0,
|
201 |
-
keep_resolution: bool = False,
|
202 |
-
seed: int | None = None,
|
203 |
-
):
|
204 |
cfg = self.config
|
205 |
if seed is not None: cfg.seed = seed
|
206 |
-
cfg.num_inference_steps
|
207 |
-
cfg.motion_bucket_scale
|
208 |
seed_everything(cfg.seed)
|
209 |
|
210 |
sample = image_audio_to_tensor(
|
211 |
self.face_det, self.feature_extractor,
|
212 |
-
img_path,
|
213 |
-
|
214 |
)
|
215 |
-
if sample is None:
|
216 |
-
return -1
|
217 |
|
218 |
-
h,
|
219 |
-
resolution = (f"{
|
220 |
if keep_resolution else f"{w}x{h}")
|
221 |
|
222 |
-
video = test(
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
frames =
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
tmp = out_path.replace(".mp4", "_noaudio.mp4")
|
238 |
-
save_videos_grid(video, tmp, n_rows=video.shape[0], fps=cfg.fps * (2 if cfg.use_interframe else 1))
|
239 |
-
os.system(
|
240 |
-
f"ffmpeg -i '{tmp}' -i '{audio_path}' -s {resolution} "
|
241 |
-
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{out_path}' -y -loglevel error"
|
242 |
-
)
|
243 |
-
os.remove(tmp)
|
244 |
-
return 0
|
|
|
1 |
+
# ---------------------------------------------------------
|
2 |
+
# sonic.py (2025-05 rev – fix AudioProjModel tensor shape)
|
3 |
+
# ---------------------------------------------------------
|
4 |
import os, math, torch, cv2
|
5 |
+
import torch.utils.checkpoint
|
6 |
from PIL import Image
|
7 |
from omegaconf import OmegaConf
|
8 |
from tqdm import tqdm
|
|
|
9 |
from diffusers import AutoencoderKLTemporalDecoder
|
10 |
from diffusers.schedulers import EulerDiscreteScheduler
|
11 |
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
|
12 |
|
13 |
from src.utils.util import save_videos_grid, seed_everything
|
14 |
+
from src.dataset.test_preprocess import image_audio_to_tensor, process_bbox
|
15 |
from src.models.base.unet_spatio_temporal_condition import (
|
16 |
UNetSpatioTemporalConditionModel, add_ip_adapters,
|
17 |
)
|
|
|
18 |
from src.models.audio_adapter.audio_proj import AudioProjModel
|
19 |
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
|
20 |
+
from src.pipelines.pipeline_sonic import SonicPipeline
|
21 |
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
|
22 |
from src.dataset.face_align.align import AlignImage
|
23 |
|
|
|
25 |
|
26 |
|
27 |
# ------------------------------------------------------------------
|
28 |
+
# single image + speech → video tensor
|
29 |
# ------------------------------------------------------------------
|
30 |
+
def test(pipe, cfg, wav_enc, audio_pe, audio2bucket, img_enc,
|
31 |
+
width, height, batch):
|
32 |
+
|
33 |
+
# --- batch 차원 맞추기 ------------------------------------------
|
|
|
34 |
for k, v in batch.items():
|
35 |
if isinstance(v, torch.Tensor):
|
36 |
+
batch[k] = v.unsqueeze(0).float().to(pipe.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
ref_img = batch['ref_img']
|
39 |
+
clip_img = batch['clip_images']
|
40 |
+
face_mask = batch['face_mask']
|
41 |
+
img_emb = img_enc(clip_img).image_embeds # (1,1024)
|
42 |
|
43 |
+
audio_feat = batch['audio_feature'] # (1,80,T)
|
44 |
+
audio_len = int(batch['audio_len'])
|
45 |
+
step = max(1, int(cfg.step)) # 안전 보정
|
46 |
|
47 |
+
window = 16_000 # 1-초 chunk
|
48 |
+
prompt_list, last_list = [], []
|
49 |
|
50 |
+
for i in range(0, audio_feat.shape[-1], window):
|
51 |
+
chunk = audio_feat[:, :, i:i+window]
|
52 |
+
hs = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
|
53 |
+
prompt_list.append(torch.stack(hs, 2)) # (1,80,L,384)
|
54 |
+
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
|
55 |
+
last_list.append(last) # (1,80,1,384)
|
56 |
|
57 |
+
if not prompt_list:
|
58 |
+
raise ValueError("❌ No speech recognised in audio.")
|
|
|
|
|
59 |
|
60 |
+
audio_prompts = torch.cat(prompt_list, 1) # (1,80,*L,384)
|
61 |
+
last_prompts = torch.cat(last_list, 1) # (1,80,*1,384)
|
62 |
|
63 |
+
# pad 규칙 (모델 원 논문과 동일)
|
64 |
+
audio_prompts = torch.cat([ torch.zeros_like(audio_prompts[:,:4]),
|
65 |
+
audio_prompts,
|
66 |
+
torch.zeros_like(audio_prompts[:,:6]) ], 1)
|
67 |
+
last_prompts = torch.cat([ torch.zeros_like(last_prompts[:,:24]),
|
68 |
+
last_prompts,
|
69 |
+
torch.zeros_like(last_prompts[:,:26]) ], 1)
|
70 |
|
71 |
+
# --------------------------------------------------------------
|
72 |
+
total_tok = audio_prompts.shape[1]
|
73 |
+
n_chunks = max(1, math.ceil(total_tok / (2*step)))
|
74 |
+
|
75 |
+
ref_L, aud_L, uncond_L, buckets = [], [], [], []
|
76 |
+
|
77 |
+
for i in tqdm(range(n_chunks), ncols=0):
|
78 |
+
st = i * 2 * step
|
79 |
+
|
80 |
+
# ① 조건 오디오 토큰(pad → 10×5×384)
|
81 |
+
cond = audio_prompts[:, st:st+10] # (1,80,10,384) → (1,10,8,384)?
|
82 |
+
cond = cond[:, :10] # f = 10
|
83 |
+
cond = cond.permute(0,2,1,3) # (1,10,80,384)
|
84 |
+
cond = cond.reshape(1, 10, 10, 5, 384) # ★ w=10, b=5 (zero-pad auto)
|
85 |
+
# ② bucket 추정용 토큰
|
86 |
+
buck = last_prompts[:, st:st+50] # (1,80,50,384)
|
87 |
+
if buck.shape[1] < 50:
|
88 |
+
pad = torch.zeros(1, 50-buck.shape[1], *buck.shape[2:], device=buck.device)
|
89 |
+
buck = torch.cat([buck, pad], 1)
|
90 |
+
buck = buck[:, :50].permute(0,2,1,3).reshape(1, 50, 10, 5, 384)
|
91 |
+
|
92 |
+
motion = audio2bucket(buck, img_emb) * 16 + 16
|
93 |
+
|
94 |
+
ref_L.append(ref_img[0])
|
95 |
+
aud_L.append(audio_pe(cond).squeeze(0)) # (10,1024)
|
96 |
+
uncond_L.append(audio_pe(torch.zeros_like(cond)).squeeze(0))
|
97 |
+
buckets.append(motion[0])
|
98 |
+
|
99 |
+
# -------------- diffusion -------------------------------------------------
|
100 |
+
vid = pipe(
|
101 |
ref_img, clip_img, face_mask,
|
102 |
+
aud_L, uncond_L, buckets,
|
103 |
height=height, width=width,
|
104 |
+
num_frames=len(aud_L),
|
105 |
+
decode_chunk_size=cfg.decode_chunk_size,
|
106 |
+
motion_bucket_scale=cfg.motion_bucket_scale,
|
107 |
+
fps=cfg.fps,
|
108 |
+
noise_aug_strength=cfg.noise_aug_strength,
|
109 |
+
min_guidance_scale1=cfg.min_appearance_guidance_scale,
|
110 |
+
max_guidance_scale1=cfg.max_appearance_guidance_scale,
|
111 |
+
min_guidance_scale2=cfg.audio_guidance_scale,
|
112 |
+
max_guidance_scale2=cfg.audio_guidance_scale,
|
113 |
+
overlap=cfg.overlap,
|
114 |
+
shift_offset=cfg.shift_offset,
|
115 |
+
frames_per_batch=cfg.n_sample_frames,
|
116 |
+
num_inference_steps=cfg.num_inference_steps,
|
117 |
+
i2i_noise_strength=cfg.i2i_noise_strength,
|
118 |
).frames
|
119 |
|
120 |
+
return (vid*0.5+0.5).clamp(0,1).to(pipe.device).unsqueeze(0).cpu()
|
|
|
121 |
|
122 |
|
123 |
# ------------------------------------------------------------------
|
124 |
+
# Sonic wrapper
|
125 |
# ------------------------------------------------------------------
|
126 |
class Sonic:
|
127 |
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
|
128 |
config = OmegaConf.load(config_file)
|
129 |
|
130 |
+
def __init__(self, device_id=0, enable_interpolate_frame=True):
|
131 |
cfg = self.config
|
132 |
cfg.use_interframe = enable_interpolate_frame
|
133 |
+
self.device = f"cuda:{device_id}" if torch.cuda.is_available() and device_id>=0 else "cpu"
|
134 |
cfg.pretrained_model_name_or_path = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path)
|
135 |
|
136 |
self._load_models(cfg)
|
137 |
print("Sonic init done")
|
138 |
|
139 |
+
# model-loader (unchanged, but with tiny clean-ups) ------------------------
|
140 |
def _load_models(self, cfg):
|
141 |
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
|
142 |
|
143 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
|
144 |
+
sched = EulerDiscreteScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
145 |
+
img_enc = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
|
146 |
+
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
|
147 |
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
|
148 |
|
149 |
+
self.audio2token = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
|
150 |
+
self.audio2bucket = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
|
151 |
|
152 |
+
unet.load_state_dict (torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
|
153 |
+
self.audio2token.load_state_dict (torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu"))
|
154 |
+
self.audio2bucket.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu"))
|
155 |
|
156 |
+
self.whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
|
157 |
+
self.whisper.requires_grad_(False)
|
158 |
|
159 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny"))
|
160 |
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
|
161 |
if cfg.use_interframe:
|
162 |
+
self.rife = RIFEModel(device=self.device); self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
|
|
|
|
|
|
|
163 |
|
164 |
+
for m in (img_enc, vae, unet): m.to(dtype)
|
165 |
+
self.pipe = SonicPipeline(unet=unet, image_encoder=img_enc, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
|
166 |
+
self.image_encoder = img_enc
|
|
|
|
|
167 |
|
168 |
+
# ------------------------------------------------------------------
|
169 |
+
def preprocess(self, img_path, expand_ratio=1.0):
|
170 |
img = cv2.imread(img_path)
|
171 |
+
_, _, boxes = self.face_det(img, maxface=True)
|
172 |
+
if boxes:
|
173 |
+
x,y,w,h = boxes[0]; return {"face_num":1,"crop_bbox":process_bbox((x,y,x+w,y+h),expand_ratio,*img.shape[:2])}
|
174 |
+
return {"face_num":0,"crop_bbox":None}
|
|
|
|
|
175 |
|
176 |
+
# ------------------------------------------------------------------
|
177 |
@torch.no_grad()
|
178 |
+
def process(self, img_path, wav_path, out_path,
|
179 |
+
min_resolution=512, inference_steps=25,
|
180 |
+
dynamic_scale=1.0, keep_resolution=False, seed=None):
|
181 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
cfg = self.config
|
183 |
if seed is not None: cfg.seed = seed
|
184 |
+
cfg.num_inference_steps = inference_steps
|
185 |
+
cfg.motion_bucket_scale = dynamic_scale
|
186 |
seed_everything(cfg.seed)
|
187 |
|
188 |
sample = image_audio_to_tensor(
|
189 |
self.face_det, self.feature_extractor,
|
190 |
+
img_path, wav_path, limit=-1,
|
191 |
+
image_size=min_resolution, area=cfg.area,
|
192 |
)
|
193 |
+
if sample is None: return -1
|
|
|
194 |
|
195 |
+
h,w = sample['ref_img'].shape[-2:]
|
196 |
+
resolution = (f"{Image.open(img_path).width//2*2}x{Image.open(img_path).height//2*2}"
|
197 |
if keep_resolution else f"{w}x{h}")
|
198 |
|
199 |
+
video = test(self.pipe, cfg, self.whisper, self.audio2token,
|
200 |
+
self.audio2bucket, self.image_encoder, w, h, sample)
|
201 |
+
|
202 |
+
if cfg.use_interframe: # RIFE interpolation
|
203 |
+
out = video.to(self.device); frames=[]
|
204 |
+
for i in tqdm(range(out.shape[2]-1), ncols=0):
|
205 |
+
mid = self.rife.inference(out[:,:,i], out[:,:,i+1]).clamp(0,1)
|
206 |
+
frames += [out[:,:,i], mid]
|
207 |
+
frames.append(out[:,:,-1]); video = torch.stack(frames,2).cpu()
|
208 |
+
|
209 |
+
tmp = out_path.replace(".mp4","_noaudio.mp4")
|
210 |
+
save_videos_grid(video, tmp, n_rows=video.shape[0], fps=cfg.fps*(2 if cfg.use_interframe else 1))
|
211 |
+
os.system(f"ffmpeg -i '{tmp}' -i '{wav_path}' -s {resolution} "
|
212 |
+
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{out_path}' -y -loglevel error")
|
213 |
+
os.remove(tmp); return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|