openfree commited on
Commit
0b636bf
·
verified ·
1 Parent(s): 9d31513

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +211 -118
app.py CHANGED
@@ -1,135 +1,228 @@
1
- # ---------------------------------------------------------
2
- # app.py Gradio UI + inference wrapper for the revised Sonic
3
- # ---------------------------------------------------------
4
- import os, io, hashlib
5
  import numpy as np
6
  from pydub import AudioSegment
 
 
 
7
  from PIL import Image
8
- import gradio as gr
9
- import spaces
10
-
11
- from sonic import Sonic # ← 현재 수정-완료된 sonic.py 를 사용
12
-
13
- # ------------------------------------------------------------------
14
- # 1. 필요 리소스(모델) 자동 다운로드 ── HF Spaces에서는 캐시 활용
15
- # ------------------------------------------------------------------
16
- os.system(
17
- 'python3 -m pip install "huggingface_hub[cli]" accelerate -q; '
18
- 'huggingface-cli download LeonJoe13/Sonic '
19
- ' --local-dir checkpoints -q; '
20
- 'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt '
21
- ' --local-dir checkpoints/stable-video-diffusion-img2vid-xt -q; '
22
- 'huggingface-cli download openai/whisper-tiny '
23
- ' --local-dir checkpoints/whisper-tiny -q'
24
- )
25
-
26
- pipe = Sonic() # GPU 메모리를 즉시 점유
27
-
28
- # ------------------------------------------------------------------
29
- # 2. 유틸
30
- # ------------------------------------------------------------------
31
- def md5(b: bytes) -> str:
32
- return hashlib.md5(b).hexdigest()
33
 
34
- TMP_DIR = "./tmp_path"; os.makedirs(TMP_DIR, exist_ok=True)
35
- RES_DIR = "./res_path"; os.makedirs(RES_DIR, exist_ok=True)
 
 
 
 
36
 
37
- # ------------------------------------------------------------------
38
- # 3. Sonic 실행 (GPU 태그 10 min)
39
- # ------------------------------------------------------------------
40
- @spaces.GPU(duration=600)
41
- def get_video_res(img_path, wav_path, out_path, dyn_scale=1.0):
42
- """실제 Sonic 파이프라인 실행."""
43
- audio = AudioSegment.from_file(wav_path)
44
- dur_s = len(audio) / 1000.0 # 초
45
 
46
- # 프레임 수 ≈ 초당 12.5 → inference_steps
47
- inf_steps = max(25, min(int(dur_s * 12.5), 750))
48
- print(f"[INFO] Audio duration: {dur_s:.2f}s → inference_steps={inf_steps}")
49
 
50
- # 얼굴 사전 검출(디버그용 로그)
51
- face_info = pipe.preprocess(img_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  print(f"[INFO] Face detection info: {face_info}")
53
 
54
- if face_info["face_num"] == 0:
55
- return -1 # 얼굴 없음
56
-
57
- os.makedirs(os.path.dirname(out_path), exist_ok=True)
58
- pipe.process(
59
- img_path, wav_path, out_path,
60
- inference_steps=inf_steps,
61
- dynamic_scale=dyn_scale,
62
- min_resolution=512,
63
- )
64
- return out_path
65
-
66
- # ------------------------------------------------------------------
67
- # 4. Gradio 인터페이스
68
- # ------------------------------------------------------------------
69
- def process_sonic(img: Image.Image, audio_tuple, dyn_scale):
70
- if img is None:
71
- raise gr.Error("Please upload an image.")
72
- if audio_tuple is None:
73
- raise gr.Error("Please upload an audio file.")
74
-
75
- # ---- 캐싱 키 ----------------------------------------------------
76
- img_bytes = io.BytesIO(); img.save(img_bytes, format="PNG")
77
- img_key = md5(img_bytes.getvalue())
78
-
79
- rate, arr = audio_tuple
80
- if arr.ndim == 1:
 
 
 
 
 
 
 
 
 
 
 
 
81
  arr = arr[:, None]
82
- segment = AudioSegment(
83
- arr.tobytes(), frame_rate=rate,
84
- sample_width=arr.dtype.itemsize, channels=arr.shape[1]
85
- ).set_channels(1).set_frame_rate(16_000)
86
-
87
- segment = segment[:60_000] # ≤60 s
88
- buf_audio = io.BytesIO(); segment.export(buf_audio, format="wav")
89
- aud_key = md5(buf_audio.getvalue())
90
-
91
- img_path = os.path.join(TMP_DIR, f"{img_key}.png")
92
- wav_path = os.path.join(TMP_DIR, f"{aud_key}.wav")
93
- out_path = os.path.join(RES_DIR, f"{img_key}_{aud_key}_{dyn_scale}.mp4")
94
-
95
- # ---- 캐시 저장 --------------------------------------------------
96
- if not os.path.exists(img_path):
97
- with open(img_path, "wb") as f: f.write(img_bytes.getvalue())
98
- if not os.path.exists(wav_path):
99
- with open(wav_path, "wb") as f: f.write(buf_audio.getvalue())
100
-
101
- if os.path.exists(out_path):
102
- print(f"[INFO] Using cached result: {out_path}")
103
- return out_path
104
-
105
- print(f"[INFO] Generating new video with dynamic_scale={dyn_scale}")
106
- res = get_video_res(img_path, wav_path, out_path, dyn_scale)
107
- if res == -1:
108
- raise gr.Error("No face detected in the image.")
109
- return res
110
-
111
- # ---- Gradio UI -----------------------------------------------------
112
- CSS = """
113
- .gradio-container {font-family: 'Arial', sans-serif;}
114
- .main-header {text-align:center;color:#2a2a2a;margin-bottom:2em;}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  """
116
 
117
- with gr.Blocks(css=CSS) as demo:
118
  gr.HTML("""
119
- <div class="main-header">
120
- <h1>🎭 Sonic Portrait Animation (≤60 s audio)</h1>
121
- <p>Still image talking-head video, driven by your voice.</p>
122
- </div>
123
  """)
124
-
125
  with gr.Row():
126
  with gr.Column():
127
- img_in = gr.Image(type="pil", label="Portrait Image")
128
- aud_in = gr.Audio(type="numpy", label="Voice (≤1 min)")
129
- dyn_sl = gr.Slider(0.5, 2.0, 1.0, 0.1, label="Animation Intensity")
130
- btn_go = gr.Button("Generate", variant="primary")
131
- vid_out = gr.Video(label="Result")
132
-
133
- btn_go.click(process_sonic, inputs=[img_in, aud_in, dyn_sl], outputs=vid_out)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
- demo.launch(share=True)
 
1
+ import spaces
2
+ import gradio as gr
3
+ import os
 
4
  import numpy as np
5
  from pydub import AudioSegment
6
+ import hashlib
7
+ import io
8
+ from sonic import Sonic
9
  from PIL import Image
10
+ import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ # 초기 실행 시 필요한 모델들을 다운로드
13
+ cmd = (
14
+ 'python3 -m pip install "huggingface_hub[cli]" accelerate; '
15
+ 'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
16
+ 'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
17
+ 'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
18
 
 
 
 
 
 
 
 
 
19
 
 
 
 
20
 
21
+ )
22
+ os.system(cmd)
23
+
24
+ pipe = Sonic()
25
+
26
+ def get_md5(content_bytes: bytes):
27
+ """MD5 해시를 계산하여 32자리 문자열을 반환"""
28
+ return hashlib.md5(content_bytes).hexdigest()
29
+
30
+ tmp_path = './tmp_path/'
31
+ res_path = './res_path/'
32
+ os.makedirs(tmp_path, exist_ok=True)
33
+ os.makedirs(res_path, exist_ok=True)
34
+
35
+ @spaces.GPU(duration=600) # 긴 비디오 처리를 위해 duration 600초로 설정 (10분)
36
+ def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
37
+ """
38
+ Sonic pipeline으로부터 실제 비디오를 생성하는 함수.
39
+ 최대 60초 길이의 오디오에 대해 inference_steps를 결정하여,
40
+ 얼굴 탐지 후 영상 생성 작업을 수행함.
41
+ """
42
+ expand_ratio = 0.0
43
+ min_resolution = 512
44
+
45
+ # 오디오 길이 계산
46
+ audio = AudioSegment.from_file(audio_path)
47
+ duration = len(audio) / 1000.0 # 초 단위
48
+
49
+ # 오디오 길이에 따라 inference_steps 결정 (최소 25프레임 ~ 최대 750프레임)
50
+ inference_steps = min(max(int(duration * 12.5), 25), 750)
51
+ print(f"[INFO] Audio duration: {duration:.2f} seconds, using inference_steps={inference_steps}")
52
+
53
+ # 얼굴 인식
54
+ face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
55
  print(f"[INFO] Face detection info: {face_info}")
56
 
57
+ # 얼굴이 하나라도 검출되면 -> pipeline 진행
58
+ if face_info['face_num'] > 0:
59
+ os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
60
+ pipe.process(
61
+ img_path,
62
+ audio_path,
63
+ res_video_path,
64
+ min_resolution=min_resolution,
65
+ inference_steps=inference_steps,
66
+ dynamic_scale=dynamic_scale
67
+
68
+
69
+ )
70
+ return res_video_path
71
+ else:
72
+ # 얼굴이 전혀 없으면 -1 리턴
73
+ return -1
74
+
75
+ def process_sonic(image, audio, dynamic_scale):
76
+ """
77
+ Gradio 인터페이스에서 호출되는 함수:
78
+ 1. 이미지/오디오 검사
79
+ 2. MD5 해시 -> 파일명
80
+ 3. 캐시 검사 -> 없으면 영상 생성
81
+ """
82
+ if image is None:
83
+ raise gr.Error("Please upload an image")
84
+ if audio is None:
85
+ raise gr.Error("Please upload an audio file")
86
+
87
+ # (1) 이미지 MD5
88
+ buf_img = io.BytesIO()
89
+ image.save(buf_img, format="PNG")
90
+ img_bytes = buf_img.getvalue()
91
+ img_md5 = get_md5(img_bytes)
92
+
93
+ # (2) 오디오 MD5
94
+ sampling_rate, arr = audio[:2]
95
+ if len(arr.shape) == 1:
96
  arr = arr[:, None]
97
+ audio_segment = AudioSegment(
98
+ arr.tobytes(),
99
+ frame_rate=sampling_rate,
100
+ sample_width=arr.dtype.itemsize,
101
+ channels=arr.shape[1]
102
+ )
103
+ # Whisper 호환을 위해 mono/16kHz로 변환
104
+ audio_segment = audio_segment.set_channels(1).set_frame_rate(16000)
105
+
106
+ MAX_DURATION_MS = 60000
107
+ if len(audio_segment) > MAX_DURATION_MS:
108
+ audio_segment = audio_segment[:MAX_DURATION_MS]
109
+
110
+ buf_audio = io.BytesIO()
111
+ audio_segment.export(buf_audio, format="wav")
112
+ audio_bytes = buf_audio.getvalue()
113
+ audio_md5 = get_md5(audio_bytes)
114
+
115
+ # (3) 파일 경로
116
+ image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
117
+ audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
118
+ res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
119
+
120
+ if not os.path.exists(image_path):
121
+ with open(image_path, "wb") as f:
122
+ f.write(img_bytes)
123
+ if not os.path.exists(audio_path):
124
+ with open(audio_path, "wb") as f:
125
+ f.write(audio_bytes)
126
+
127
+ # (4) 캐싱된 결과가 있으면 재사용
128
+ if os.path.exists(res_video_path):
129
+ print(f"[INFO] Using cached result: {res_video_path}")
130
+ return res_video_path
131
+ else:
132
+ print(f"[INFO] Generating new video with dynamic_scale={dynamic_scale}")
133
+ video_result = get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
134
+ return video_result
135
+
136
+ def get_example():
137
+ return []
138
+
139
+ css = """
140
+ .gradio-container {
141
+ font-family: 'Arial', sans-serif;
142
+ }
143
+ .main-header {
144
+ text-align: center;
145
+ color: #2a2a2a;
146
+ margin-bottom: 2em;
147
+ }
148
+ .parameter-section {
149
+ background-color: #f5f5f5;
150
+ padding: 1em;
151
+ border-radius: 8px;
152
+ margin: 1em 0;
153
+ }
154
+ .example-section {
155
+ margin-top: 2em;
156
+ }
157
  """
158
 
159
+ with gr.Blocks(css=css) as demo:
160
  gr.HTML("""
161
+ <div class="main-header">
162
+ <h1>🎭 Sonic: Advanced Portrait Animation</h1>
163
+ <p>Transform still images into dynamic videos synchronized with audio (up to 1 minute)</p>
164
+ </div>
165
  """)
166
+
167
  with gr.Row():
168
  with gr.Column():
169
+ image_input = gr.Image(
170
+ type='pil',
171
+ label="Portrait Image",
172
+ elem_id="image_input"
173
+ )
174
+ audio_input = gr.Audio(
175
+ label="Voice/Audio Input (up to 1 minute)",
176
+ elem_id="audio_input",
177
+ type="numpy"
178
+ )
179
+ with gr.Column():
180
+ dynamic_scale = gr.Slider(
181
+ minimum=0.5,
182
+ maximum=2.0,
183
+ value=1.0,
184
+ step=0.1,
185
+ label="Animation Intensity",
186
+ info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
187
+ )
188
+ process_btn = gr.Button(
189
+ "Generate Animation",
190
+ variant="primary",
191
+ elem_id="process_btn"
192
+ )
193
+
194
+ with gr.Column():
195
+ video_output = gr.Video(
196
+ label="Generated Animation",
197
+ elem_id="video_output"
198
+ )
199
+
200
+ process_btn.click(
201
+ fn=process_sonic,
202
+ inputs=[image_input, audio_input, dynamic_scale],
203
+ outputs=video_output,
204
+ )
205
+
206
+ gr.Examples(
207
+ examples=get_example(),
208
+ fn=process_sonic,
209
+ inputs=[image_input, audio_input, dynamic_scale],
210
+ outputs=video_output,
211
+ cache_examples=False
212
+ )
213
+
214
+ gr.HTML("""
215
+ <div style="text-align: center; margin-top: 2em;">
216
+ <div style="margin-bottom: 1em;">
217
+ <a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
218
+ <img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
219
+ </a>
220
+ <a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
221
+ <img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
222
+ </a>
223
+ </div>
224
+ <p>🔔 Note: For optimal results, use clear portrait images and high-quality audio (now supports up to 1 minute!)</p>
225
+ </div>
226
+ """)
227
 
228
+ demo.launch(share=True)