Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,586 Bytes
7b4dc6f 79d88c4 0329637 7b4dc6f 0329637 79d88c4 0329637 79d88c4 c260fe0 0329637 7b4dc6f 0329637 c260fe0 79d88c4 0329637 79d88c4 914dc02 7b4dc6f 79d88c4 0329637 85ad908 7b4dc6f 0329637 3c16281 7b4dc6f 1fb410d 7b4dc6f f40c908 7b4dc6f 0178f77 7b4dc6f 0329637 0178f77 7b4dc6f 0178f77 7b4dc6f 0329637 7b4dc6f 1fb410d c260fe0 f40c908 85ad908 c260fe0 7b4dc6f 1fb410d a47303a 0329637 c260fe0 7b4dc6f a47303a 7b4dc6f 85ad908 1fb410d 7b4dc6f 1fb410d 79d88c4 7b4dc6f 0329637 7b4dc6f 1fb410d 0329637 7b4dc6f 0329637 1fb410d 7b4dc6f a47303a 0329637 1fb410d 7b4dc6f 0329637 7b4dc6f 0329637 79d88c4 7b4dc6f 612b064 7b4dc6f 1fb410d 0329637 a47303a 1fb410d 7b4dc6f 0329637 7b4dc6f 6ee08fc 0329637 1fb410d 0329637 7b4dc6f 0329637 1fb410d 7b4dc6f 5d6304b 7b4dc6f 0329637 7b4dc6f 0329637 7b4dc6f 0329637 7b4dc6f 0329637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# sonic.py
# ---------------------------------------------------------------------
# Sonic – single-image + speech → talking-head video (offline edition)
# ---------------------------------------------------------------------
import os, math
from typing import Dict, Any, List
import torch
from PIL import Image
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import (
UNetSpatioTemporalConditionModel,
add_ip_adapters,
)
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# ------------------------------------------------------------------ #
# 헬퍼 : diffusers 경로 자동 찾기 #
# ------------------------------------------------------------------ #
def _locate_diffusers_dir(root: str) -> str:
"""
`root` 하위 디렉터리에서 diffusers 스냅샷(model_index.json or config.json)
이 들어 있는 실제 모델 폴더를 찾아서 반환한다. 존재하지 않으면 오류.
"""
for cur, _dirs, files in os.walk(root):
if {"model_index.json", "config.json"} & set(files):
return cur
raise FileNotFoundError(
f"[ERROR] No diffusers model files found under '{root}'. "
"Check that the checkpoint was downloaded correctly."
)
# ------------------------------------------------------------------ #
# 영상 생성용 내부 함수 #
# ------------------------------------------------------------------ #
def _gen_video_tensor(
pipe: SonicPipeline,
cfg: OmegaConf,
wav_enc: WhisperModel,
audio_pe: AudioProjModel,
audio2bucket: Audio2bucketModel,
image_encoder: CLIPVisionModelWithProjection,
width: int,
height: int,
batch: Dict[str, torch.Tensor],
) -> torch.Tensor:
"""
single 이미지 + 오디오 feature → video tensor (C,T,H,W)
"""
# -------- batch 차원 보정 --------------------------------------
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch["ref_img"] # (1,C,H,W)
clip_img = batch["clip_images"]
face_mask = batch["face_mask"]
image_embeds = image_encoder(clip_img).image_embeds
audio_feat: torch.Tensor = batch["audio_feature"] # (1, 80, T)
audio_len: int = int(batch["audio_len"]) # scalar
step: int = int(cfg.step)
# step 이 전체 길이보다 크면 최소 1 로 보정
if audio_len < step:
step = max(1, audio_len)
# -------- Whisper encoder 1초 단위로 수행 ----------------------
window = 16_000 # 1-s chunk
aud_prompts: List[torch.Tensor] = []
last_prompts: List[torch.Tensor] = []
for i in range(0, audio_feat.shape[-1], window):
chunk = audio_feat[:, :, i : i + window]
# 모든 hidden-states / 마지막 hidden-state
layers: List[torch.Tensor] = wav_enc.encoder(
chunk, output_hidden_states=True
).hidden_states
last_hidden = wav_enc.encoder(chunk).last_hidden_state # (1, 80, 384)
# Whisper layer 는 6개 → AudioProj 가 기대하는 5개로 truncate
prompt = torch.stack(layers, dim=2)[:, :, :5] # (1,80,5,384)
aud_prompts.append(prompt)
last_prompts.append(last_hidden.unsqueeze(-2)) # (1,80,1,384)
if len(aud_prompts) == 0:
raise ValueError("[ERROR] No speech recognised in the provided audio.")
# concat 뒤 padding 규칙 적용
aud_prompts = torch.cat(aud_prompts, dim=1) # (1, 80*…, 5, 384)
last_prompts = torch.cat(last_prompts, dim=1) # (1, 80*…, 1, 384)
aud_prompts = torch.cat(
[torch.zeros_like(aud_prompts[:, :4]), aud_prompts, torch.zeros_like(aud_prompts[:, :6])],
dim=1,
)
last_prompts = torch.cat(
[torch.zeros_like(last_prompts[:, :24]), last_prompts, torch.zeros_like(last_prompts[:, :26])],
dim=1,
)
# -------- f=10 / w=5 로 clip 자르기 --------------------------
ref_list, aud_list, uncond_list, mb_list = [], [], [], []
total_tokens = aud_prompts.shape[1]
n_chunks = max(1, math.ceil(total_tokens / (2 * step)))
for i in tqdm(range(n_chunks), desc="audio-chunks", ncols=0):
s = i * 2 * step
cond_clip = aud_prompts[:, s : s + 10] # (1,10,5,384)
if cond_clip.shape[1] < 10: # 뒤쪽 padding
pad = torch.zeros_like(cond_clip[:, : 10 - cond_clip.shape[1]])
cond_clip = torch.cat([cond_clip, pad], dim=1)
bucket_clip = last_prompts[:, s : s + 50] # (1,50,1,384)
if bucket_clip.shape[1] < 50:
pad = torch.zeros_like(bucket_clip[:, : 50 - bucket_clip.shape[1]])
bucket_clip = torch.cat([bucket_clip, pad], dim=1)
# (bz,f,w,b,c) 5-D 로 변환
cond_clip = cond_clip.unsqueeze(3) # (1,10,5,1,384)
bucket_clip = bucket_clip.unsqueeze(3) # (1,50,1,1,384)
uncond_clip = torch.zeros_like(cond_clip)
motion_bucket = audio2bucket(bucket_clip, image_embeds) * 16 + 16
ref_list .append(ref_img[0])
aud_list .append(audio_pe(cond_clip).squeeze(0)[0]) # (ctx,1024)
uncond_list .append(audio_pe(uncond_clip).squeeze(0)[0]) # (ctx,1024)
mb_list .append(motion_bucket[0])
# -------- UNet 파이프라인 실행 --------------------------------
video = (
pipe(
ref_img,
clip_img,
face_mask,
aud_list,
uncond_list,
mb_list,
height=height,
width=width,
num_frames=len(aud_list),
decode_chunk_size=cfg.decode_chunk_size,
motion_bucket_scale=cfg.motion_bucket_scale,
fps=cfg.fps,
noise_aug_strength=cfg.noise_aug_strength,
min_guidance_scale1=cfg.min_appearance_guidance_scale,
max_guidance_scale1=cfg.max_appearance_guidance_scale,
min_guidance_scale2=cfg.audio_guidance_scale,
max_guidance_scale2=cfg.audio_guidance_scale,
overlap=cfg.overlap,
shift_offset=cfg.shift_offset,
frames_per_batch=cfg.n_sample_frames,
num_inference_steps=cfg.num_inference_steps,
i2i_noise_strength=cfg.i2i_noise_strength,
).frames
* 0.5
+ 0.5
).clamp(0, 1)
# (B,C,T,H,W) → (C,T,H,W)
return video.to(pipe.device).squeeze(0).cpu()
# ------------------------------------------------------------------ #
# Sonic – main class #
# ------------------------------------------------------------------ #
class Sonic:
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
cfg = self.config
cfg.use_interframe = enable_interpolate_frame
# diffusers 모델 상위 폴더 (로컬 다운로드 경로)
self.diffusers_root = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path)
self.device = (
f"cuda:{device_id}" if device_id >= 0 and torch.cuda.is_available() else "cpu"
)
self._load_models(cfg)
print("Sonic init done")
# -------------------------------------------------------------- #
def _load_models(self, cfg):
# dtype
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
diff_root = _locate_diffusers_dir(self.diffusers_root)
# diffusers 모듈들
vae = AutoencoderKLTemporalDecoder.from_pretrained(diff_root, subfolder="vae", variant="fp16")
sched = EulerDiscreteScheduler.from_pretrained(diff_root, subfolder="scheduler")
img_e = CLIPVisionModelWithProjection.from_pretrained(diff_root, subfolder="image_encoder", variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(diff_root, subfolder="unet", variant="fp16")
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
# 오디오 어댑터
a2t = AudioProjModel(seq_len=10, blocks=5, channels=384,
intermediate_dim=1024, output_dim=1024, context_tokens=32).to(self.device)
a2b = Audio2bucketModel(seq_len=50, blocks=1, channels=384,
clip_channels=1024, intermediate_dim=1024, output_dim=1,
context_tokens=2).to(self.device)
# 체크포인트 로드
a2t.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu"))
a2b.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu"))
unet.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
# Whisper
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
whisper.requires_grad_(False)
# 이미지 / 얼굴 / 보간
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny"))
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
if cfg.use_interframe:
self.rife = RIFEModel(device=self.device)
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
# dtype 적용
for m in (vae, img_e, unet):
m.to(dtype)
self.pipe = SonicPipeline(unet=unet, image_encoder=img_e, vae=vae, scheduler=sched).to(self.device, dtype=dtype)
self.image_encoder = img_e
self.audio2token = a2t
self.audio2bucket = a2b
self.whisper = whisper
# -------------------------------------------------------------- #
def preprocess(self, image_path: str, expand_ratio: float = 1.0) -> Dict[str, Any]:
img = cv2.imread(image_path)
h, w = img.shape[:2]
_, _, bboxes = self.face_det(img, maxface=True)
if bboxes:
x1, y1, ww, hh = bboxes[0]
crop = process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)
return {"face_num": 1, "crop_bbox": crop}
return {"face_num": 0, "crop_bbox": None}
# -------------------------------------------------------------- #
@torch.no_grad()
def process(
self,
image_path: str,
audio_path: str,
output_path: str,
min_resolution: int = 512,
inference_steps: int = 25,
dynamic_scale: float = 1.0,
keep_resolution: bool = False,
seed: int | None = None,
) -> int:
cfg = self.config
if seed is not None:
cfg.seed = seed
cfg.num_inference_steps = inference_steps
cfg.motion_bucket_scale = dynamic_scale
seed_everything(cfg.seed)
# 이미지·오디오 tensor 변환
data = image_audio_to_tensor(
self.face_det,
self.feature_extractor,
image_path,
audio_path,
limit=-1,
image_size=min_resolution,
area=cfg.area,
)
if data is None:
return -1
h, w = data["ref_img"].shape[-2:]
if keep_resolution:
im = Image.open(image_path)
resolution = f"{(im.width // 2) * 2}x{(im.height // 2) * 2}"
else:
resolution = f"{w}x{h}"
# video tensor 생성
video = _gen_video_tensor(
self.pipe, cfg, self.whisper, self.audio2token, self.audio2bucket,
self.image_encoder, w, h, data,
)
# 중간 프레임 보간
if cfg.use_interframe:
out = video.to(self.device)
frames = []
for i in tqdm(range(out.shape[1] - 1), desc="interpolate", ncols=0):
frames.extend([out[:, i], self.rife.inference(out[:, i], out[:, i + 1]).clamp(0, 1)])
frames.append(out[:, -1])
video = torch.stack(frames, 1).cpu() # (C,T',H,W)
# 저장
tmp = output_path.replace(".mp4", "_noaudio.mp4")
save_videos_grid(video.unsqueeze(0), tmp, n_rows=1, fps=cfg.fps * (2 if cfg.use_interframe else 1))
os.system(
f"ffmpeg -loglevel error -y -i '{tmp}' -i '{audio_path}' -s {resolution} "
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{output_path}'"
)
os.remove(tmp)
return 0
|