Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,195 Bytes
a47303a 0329637 79d88c4 0329637 79d88c4 0329637 79d88c4 c260fe0 0329637 c260fe0 79d88c4 0329637 a47303a 0329637 79d88c4 914dc02 a47303a 0329637 a47303a 0329637 a47303a 0329637 a47303a 0329637 5d6304b 79d88c4 0329637 85ad908 0329637 3c16281 0329637 a47303a 1fb410d a47303a 0329637 f40c908 0329637 a47303a 0178f77 0329637 0178f77 0329637 0178f77 0329637 a47303a 0329637 a47303a 0329637 a47303a 5d6304b 0329637 5d6304b 0329637 a47303a 5d6304b 0329637 a47303a 0329637 5d6304b 0329637 85ad908 0329637 85ad908 0329637 5d6304b 79d88c4 a47303a 1fb410d c260fe0 a47303a 1fb410d c260fe0 f40c908 85ad908 c260fe0 a47303a 1fb410d a47303a 0329637 c260fe0 1d7967c a47303a 85ad908 1d7967c 1fb410d a47303a 1fb410d 79d88c4 a47303a 0329637 a47303a 0329637 a47303a 0329637 a47303a 0329637 1fb410d 0329637 a47303a 0329637 1fb410d a47303a 0329637 1fb410d a47303a 0329637 79d88c4 a47303a 612b064 0329637 a47303a 5d6304b 1fb410d 0329637 a47303a 1fb410d 0329637 f40c908 0329637 6ee08fc 0329637 1fb410d 0329637 1fb410d 5d6304b 0329637 5d6304b 0329637 5d6304b 0329637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# sonic.py ── 전체
import os, math, glob, torch, cv2
from PIL import Image
from omegaconf import OmegaConf
from tqdm import tqdm
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import (
UNetSpatioTemporalConditionModel, add_ip_adapters,
)
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
try:
from safetensors.torch import load_file as safe_load
except ImportError:
safe_load = None # safetensors 미설치 시 대비
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# ------------------------------------------------------------ utils
def _find_ckpt(root: str, keyword: str):
"""root 밑에서 keyword 가 포함된 .pth / .pt / .safetensors 하나 찾기"""
patterns = [f"**/*{keyword}*.pth",
f"**/*{keyword}*.pt",
f"**/*{keyword}*.safetensors"]
for p in patterns:
files = glob.glob(os.path.join(root, p), recursive=True)
if files:
return files[0]
return None
# --------------------------------------------------- speech → video
def test(pipe, cfg, wav_enc, audio_pe, audio2bucket, image_encoder,
width, height, batch):
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch["ref_img"]
clip_img = batch["clip_images"]
face_mask = batch["face_mask"]
image_embeds = image_encoder(clip_img).image_embeds
audio_feature = batch["audio_feature"] # (1,80,T)
audio_len = int(batch["audio_len"])
step = max(1, int(cfg.step))
window = 16_000
audio_prompts, last_prompts = [], []
for i in range(0, audio_feature.shape[-1], window):
chunk = audio_feature[:, :, i:i+window]
hidden = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
audio_prompts.append(torch.stack(hidden, dim=2))
last_prompts.append(last)
if not audio_prompts:
raise ValueError("[ERROR] No speech recognised in the provided audio.")
audio_prompts = torch.cat(audio_prompts, dim=1)
last_prompts = torch.cat(last_prompts , dim=1)
audio_prompts = torch.cat(
[torch.zeros_like(audio_prompts[:, :4]),
audio_prompts,
torch.zeros_like(audio_prompts[:, :6])], 1)
last_prompts = torch.cat(
[torch.zeros_like(last_prompts[:, :24]),
last_prompts,
torch.zeros_like(last_prompts[:, :26])], 1)
num_chunks = max(1, math.ceil(audio_prompts.shape[1] / (2*step)))
ref_list, audio_list, uncond_list, buckets = [], [], [], []
for i in tqdm(range(num_chunks)):
st = i * 2 * step
cond = audio_prompts[:, st: st+10]
if cond.shape[2] < 10:
pad = torch.zeros_like(cond[:, :, :10-cond.shape[2]])
cond = torch.cat([cond, pad], 2)
bucket_clip = last_prompts[:, st: st+50]
if bucket_clip.shape[2] < 50:
pad = torch.zeros_like(bucket_clip[:, :, :50-bucket_clip.shape[2]])
bucket_clip = torch.cat([bucket_clip, pad], 2)
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16
ref_list.append(ref_img[0])
audio_list.append(audio_pe(cond).squeeze(0))
uncond_list.append(audio_pe(torch.zeros_like(cond)).squeeze(0))
buckets.append(motion[0])
video = pipe(
ref_img, clip_img, face_mask,
audio_list, uncond_list, buckets,
height=height, width=width,
num_frames=len(audio_list),
decode_chunk_size=cfg.decode_chunk_size,
motion_bucket_scale=cfg.motion_bucket_scale,
fps=cfg.fps,
noise_aug_strength=cfg.noise_aug_strength,
min_guidance_scale1=cfg.min_appearance_guidance_scale,
max_guidance_scale1=cfg.max_appearance_guidance_scale,
min_guidance_scale2=cfg.audio_guidance_scale,
max_guidance_scale2=cfg.audio_guidance_scale,
overlap=cfg.overlap,
shift_offset=cfg.shift_offset,
frames_per_batch=cfg.n_sample_frames,
num_inference_steps=cfg.num_inference_steps,
i2i_noise_strength=cfg.i2i_noise_strength,
).frames
return (video * .5 + .5).clamp(0,1).unsqueeze(0).cpu()
# ------------------------------------------------------------ Sonic
class Sonic:
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
cfg = self.config
cfg.use_interframe = enable_interpolate_frame
self.device = f"cuda:{device_id}" if torch.cuda.is_available() and device_id >= 0 else "cpu"
# diffusers 베이스 모델은 ⇣ (config.json 포함)
self.diffusers_root = os.path.join(BASE_DIR, "checkpoints", "stable-video-diffusion-img2vid-xt")
# 추가 pth/pt/safetensors 는 ⇣
self.ckpt_root = os.path.join(BASE_DIR, "checkpoints", "Sonic")
self._load_models(cfg)
print("Sonic init done")
def _locate_diffusers_dir(root: str) -> str:
"""
root 아래에서 model_index.json 또는 config.json 이 존재하는
디렉터리를 찾아 반환. (snapshots/<sha>/ … 형식 대응)
"""
for cur, _dirs, files in os.walk(root):
if {"model_index.json", "config.json"} & set(files):
return cur
raise FileNotFoundError(
f"[ERROR] diffusers model files(model_index.json/config.json) "
f"not found under {root}"
)
# --------------------------------------------- load all networks
def _load_models(self, cfg):
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
diff_root = _locate_diffusers_dir(self.diffusers_root) # ★★ 핵심 추가
vae = AutoencoderKLTemporalDecoder.from_pretrained(self.diffusers_root, subfolder="vae", variant="fp16")
sched = EulerDiscreteScheduler.from_pretrained(self.diffusers_root, subfolder="scheduler")
img_e = CLIPVisionModelWithProjection.from_pretrained(self.diffusers_root, subfolder="image_encoder", variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(self.diffusers_root, subfolder="unet", variant="fp16")
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
def _load_extra(module, key):
path = _find_ckpt(self.ckpt_root, key)
if not path:
print(f"[WARN] extra ckpt for '{key}' not found → skip")
return
print(f"[INFO] load {key} → {os.path.relpath(path, BASE_DIR)}")
state = safe_load(path, device="cpu") if (safe_load and path.endswith(".safetensors")) else torch.load(path, map_location="cpu")
module.load_state_dict(state, strict=False)
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
_load_extra(unet, "unet")
_load_extra(a2t, "audio2token")
_load_extra(a2b, "audio2bucket")
whisper = WhisperModel.from_pretrained(
os.path.join(BASE_DIR, "checkpoints/whisper-tiny")
).to(self.device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
os.path.join(BASE_DIR, "checkpoints/whisper-tiny")
)
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
if cfg.use_interframe:
self.rife = RIFEModel(device=self.device)
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
for m in (img_e, vae, unet):
m.to(dtype)
self.pipe = SonicPipeline(unet=unet, image_encoder=img_e, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
self.image_encoder = img_e
self.audio2token = a2t
self.audio2bucket = a2b
self.whisper = whisper
# --------------------------------------------- preprocess helpers
def preprocess(self, image_path: str, expand_ratio: float = 1.0):
img = cv2.imread(image_path)
h, w = img.shape[:2]
_, _, bboxes = self.face_det(img, maxface=True)
if bboxes:
x1, y1, ww, hh = bboxes[0]
return {"face_num": 1,
"crop_bbox": process_bbox((x1, y1, x1+ww, y1+hh), expand_ratio, h, w)}
return {"face_num": 0, "crop_bbox": None}
# --------------------------------------------------------------- run
@torch.no_grad()
def process(self, image_path, audio_path, output_path,
min_resolution=512, inference_steps=25,
dynamic_scale=1.0, keep_resolution=False, seed=None):
cfg = self.config
if seed is not None:
cfg.seed = seed
cfg.num_inference_steps = inference_steps
cfg.motion_bucket_scale = dynamic_scale
seed_everything(cfg.seed)
data = image_audio_to_tensor(
self.face_det, self.feature_extractor,
image_path, audio_path,
limit=-1, image_size=min_resolution, area=cfg.area
)
if data is None:
return -1
h, w = data["ref_img"].shape[-2:]
if keep_resolution:
im = Image.open(image_path)
resolution = f"{im.width//2*2}x{im.height//2*2}"
else:
resolution = f"{w}x{h}"
video = test(self.pipe, cfg, self.whisper, self.audio2token,
self.audio2bucket, self.image_encoder,
w, h, data)
if cfg.use_interframe:
out, frames = video.to(self.device), []
for i in tqdm(range(out.shape[2]-1), ncols=0):
mid = self.rife.inference(out[:,:,i], out[:,:,i+1]).clamp(0,1).detach()
frames.extend([out[:,:,i], mid])
frames.append(out[:,:,-1])
video = torch.stack(frames, 2).cpu()
tmp = output_path.replace(".mp4", "_noaudio.mp4")
save_videos_grid(video, tmp, n_rows=video.shape[0],
fps=cfg.fps*(2 if cfg.use_interframe else 1))
os.system(
f"ffmpeg -loglevel error -y -i '{tmp}' -i '{audio_path}' -s {resolution} "
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{output_path}'")
os.remove(tmp)
return 0
|