Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,388 Bytes
0329637 79d88c4 0329637 79d88c4 0329637 79d88c4 c260fe0 0329637 c260fe0 79d88c4 0329637 79d88c4 914dc02 0329637 5d6304b 0329637 79d88c4 0329637 85ad908 0329637 3c16281 0329637 1fb410d 0329637 f40c908 0329637 0178f77 0329637 0178f77 0329637 0178f77 0329637 1fb410d 0329637 5d6304b 0329637 5d6304b 0329637 5d6304b 0329637 5d6304b 0329637 5d6304b 0329637 85ad908 0329637 85ad908 0329637 5d6304b 79d88c4 0329637 1fb410d c260fe0 0329637 1fb410d c260fe0 f40c908 85ad908 c260fe0 0329637 1fb410d 0329637 c260fe0 0329637 85ad908 1fb410d 0329637 5d6304b 0329637 5d6304b 1fb410d 79d88c4 0329637 1fb410d 0329637 1fb410d 0329637 1fb410d 0329637 79d88c4 0329637 612b064 0329637 5d6304b 1fb410d 0329637 5d6304b 1fb410d 0329637 f40c908 0329637 6ee08fc 0329637 1fb410d 0329637 1fb410d 5d6304b 0329637 5d6304b 0329637 5d6304b 0329637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# sonic.py (전체 파일)
import os, math, glob, torch, cv2
from PIL import Image
from omegaconf import OmegaConf
from tqdm import tqdm
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import (
UNetSpatioTemporalConditionModel, add_ip_adapters,
)
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
try:
from safetensors.torch import load_file as safe_load
except ImportError: # safetensors 가 없으면 torch.load 만 사용
safe_load = None
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# -------------------------------------------------------------------
# 공용 : 체크포인트(가중치) 탐색 함수
# -------------------------------------------------------------------
def _find_ckpt(root: str, keyword: str):
"""root 아래에서 keyword 가 포함된 .pth / .pt / .safetensors 파일 검색"""
patterns = [f"**/*{keyword}*.pth", f"**/*{keyword}*.pt",
f"**/*{keyword}*.safetensors"]
files = []
for p in patterns:
files.extend(glob.glob(os.path.join(root, p), recursive=True))
return files[0] if files else None
# -------------------------------------------------------------------
# single image + speech → video tensor
# -------------------------------------------------------------------
def test(pipe, cfg, wav_enc, audio_pe, audio2bucket, image_encoder,
width, height, batch):
# 배치 차원 맞추기
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch["ref_img"]
clip_img = batch["clip_images"]
face_mask = batch["face_mask"]
image_embeds = image_encoder(clip_img).image_embeds
audio_feature = batch["audio_feature"] # (1,80,T)
audio_len = int(batch["audio_len"])
step = max(1, int(cfg.step),) # 최소 1
window = 16_000 # 1초 단위
audio_prompts, last_prompts = [], []
for i in range(0, audio_feature.shape[-1], window):
chunk = audio_feature[:, :, i:i+window]
hidden_layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
last_hidden = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
audio_prompts.append(torch.stack(hidden_layers, dim=2))
last_prompts.append(last_hidden)
if not audio_prompts:
raise ValueError("[ERROR] No speech recognised in the provided audio.")
audio_prompts = torch.cat(audio_prompts, dim=1)
last_prompts = torch.cat(last_prompts , dim=1)
# padding 규칙
audio_prompts = torch.cat(
[torch.zeros_like(audio_prompts[:, :4]),
audio_prompts,
torch.zeros_like(audio_prompts[:, :6])], dim=1)
last_prompts = torch.cat(
[torch.zeros_like(last_prompts[:, :24]),
last_prompts,
torch.zeros_like(last_prompts[:, :26])], dim=1)
total_tokens = audio_prompts.shape[1]
num_chunks = max(1, math.ceil(total_tokens / (2*step)))
ref_list, audio_list, uncond_list, buckets = [], [], [], []
for i in tqdm(range(num_chunks)):
st = i * 2 * step
cond = audio_prompts[:, st: st+10]
if cond.shape[2] < 10:
pad = torch.zeros_like(cond[:, :, :10-cond.shape[2]])
cond = torch.cat([cond, pad], dim=2)
bucket_clip = last_prompts[:, st: st+50]
if bucket_clip.shape[2] < 50:
pad = torch.zeros_like(bucket_clip[:, :, :50-bucket_clip.shape[2]])
bucket_clip = torch.cat([bucket_clip, pad], dim=2)
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16
ref_list.append(ref_img[0])
audio_list.append(audio_pe(cond).squeeze(0))
uncond_list.append(audio_pe(torch.zeros_like(cond)).squeeze(0))
buckets.append(motion[0])
video = pipe(
ref_img, clip_img, face_mask,
audio_list, uncond_list, buckets,
height=height, width=width,
num_frames=len(audio_list),
decode_chunk_size=cfg.decode_chunk_size,
motion_bucket_scale=cfg.motion_bucket_scale,
fps=cfg.fps,
noise_aug_strength=cfg.noise_aug_strength,
min_guidance_scale1=cfg.min_appearance_guidance_scale,
max_guidance_scale1=cfg.max_appearance_guidance_scale,
min_guidance_scale2=cfg.audio_guidance_scale,
max_guidance_scale2=cfg.audio_guidance_scale,
overlap=cfg.overlap,
shift_offset=cfg.shift_offset,
frames_per_batch=cfg.n_sample_frames,
num_inference_steps=cfg.num_inference_steps,
i2i_noise_strength=cfg.i2i_noise_strength,
).frames
return (video * 0.5 + 0.5).clamp(0, 1).unsqueeze(0).cpu()
# -------------------------------------------------------------------
# Sonic ✨
# -------------------------------------------------------------------
class Sonic:
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
cfg = self.config
cfg.use_interframe = enable_interpolate_frame
self.device = f"cuda:{device_id}" if torch.cuda.is_available() and device_id >= 0 else "cpu"
# 가중치 루트
ckpt_root = os.path.join(BASE_DIR, "checkpoints", "Sonic")
cfg.pretrained_model_name_or_path = ckpt_root # diffusers 형식
self._load_models(cfg, ckpt_root)
print("Sonic init done")
# --------------------------------------------------------------
def _load_models(self, cfg, ckpt_root):
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
# diffusers 기본 가중치
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
sched = EulerDiscreteScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
image_enc = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
# ------------ 추가 체크포인트 (.pth / .safetensors) ------------
def _try_load(module, keyword):
path = _find_ckpt(ckpt_root, keyword)
if not path:
print(f"[WARN] {keyword} checkpoint not found → skip")
return
print(f"[INFO] load {keyword} ckpt → {os.path.relpath(path, BASE_DIR)}")
if path.endswith(".safetensors") and safe_load is not None:
state = safe_load(path, device="cpu")
else:
state = torch.load(path, map_location="cpu")
module.load_state_dict(state, strict=False)
_try_load(unet, "unet")
# audio adapters (필수)
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
_try_load(a2t, "audio2token")
_try_load(a2b, "audio2bucket")
# whisper tiny
whisper = WhisperModel.from_pretrained(
os.path.join(BASE_DIR, "checkpoints/whisper-tiny")
).to(self.device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
os.path.join(BASE_DIR, "checkpoints/whisper-tiny")
)
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
if cfg.use_interframe:
self.rife = RIFEModel(device=self.device)
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
for m in (image_enc, vae, unet):
m.to(dtype)
self.pipe = SonicPipeline(unet=unet, image_encoder=image_enc, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
self.image_encoder = image_enc
self.audio2token = a2t
self.audio2bucket = a2b
self.whisper = whisper
# --------------------------------------------------------------
def preprocess(self, image_path: str, expand_ratio: float = 1.0):
img = cv2.imread(image_path)
h, w = img.shape[:2]
_, _, bboxes = self.face_det(img, maxface=True)
if bboxes:
x1, y1, ww, hh = bboxes[0]
return {"face_num": 1,
"crop_bbox": process_bbox((x1, y1, x1+ww, y1+hh), expand_ratio, h, w)}
return {"face_num": 0, "crop_bbox": None}
# --------------------------------------------------------------
@torch.no_grad()
def process(self, image_path, audio_path, output_path,
min_resolution=512, inference_steps=25, dynamic_scale=1.0,
keep_resolution=False, seed=None):
cfg = self.config
if seed is not None:
cfg.seed = seed
cfg.num_inference_steps = inference_steps
cfg.motion_bucket_scale = dynamic_scale
seed_everything(cfg.seed)
# 이미지·오디오 → tensor
data = image_audio_to_tensor(
self.face_det, self.feature_extractor,
image_path, audio_path,
limit=-1, image_size=min_resolution, area=cfg.area
)
if data is None:
return -1
h, w = data["ref_img"].shape[-2:]
if keep_resolution:
im = Image.open(image_path)
resolution = f"{im.width//2*2}x{im.height//2*2}"
else:
resolution = f"{w}x{h}"
video = test(self.pipe, cfg, self.whisper, self.audio2token,
self.audio2bucket, self.image_encoder,
w, h, data)
# 인터프레임 보간
if cfg.use_interframe:
out, frames = video.to(self.device), []
for i in tqdm(range(out.shape[2]-1), ncols=0):
mid = self.rife.inference(out[:,:,i], out[:,:,i+1]).clamp(0,1).detach()
frames.extend([out[:,:,i], mid])
frames.append(out[:,:,-1])
video = torch.stack(frames, 2).cpu()
tmp = output_path.replace(".mp4", "_noaudio.mp4")
save_videos_grid(video, tmp, n_rows=video.shape[0],
fps=cfg.fps*(2 if cfg.use_interframe else 1))
os.system(
f"ffmpeg -loglevel error -y -i '{tmp}' -i '{audio_path}' -s {resolution} "
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{output_path}'")
os.remove(tmp)
return 0
|