Spaces:
Sleeping
Sleeping
File size: 3,345 Bytes
a350303 a4f3cd1 f33c0ca b9cfeca a4f3cd1 a350303 a4f3cd1 9f1d16e b9cfeca a4f3cd1 f33c0ca f020d40 f33c0ca b9cfeca a4f3cd1 0726629 b9cfeca 9d5574c f33c0ca 9d5574c 2768dbb 0726629 f33c0ca 9d5574c f020d40 9d5574c f33c0ca f020d40 9d5574c f020d40 9d5574c f33c0ca f020d40 f33c0ca b9cfeca f33c0ca f020d40 f33c0ca f020d40 f33c0ca b9cfeca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr
from transformers import pipeline
import os
# Initialize global pipeline
ner_pipeline = None
def load_healthcare_ner_pipeline():
"""Load the Hugging Face pipeline for Healthcare NER."""
global ner_pipeline
if ner_pipeline is None:
ner_pipeline = pipeline(
"token-classification",
model="TypicaAI/HealthcareNER-Fr",
aggregation_strategy="first" # Groups B- and I- tokens into entities
)
return ner_pipeline
def process_text(text):
"""Process input text and return highlighted entities."""
pipeline = load_healthcare_ner_pipeline()
entities = pipeline(text)
return {"text": text, "entities": entities}
def log_demo_usage(text, num_entities):
"""Log demo usage for analytics."""
print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
# Define the Gradio interface
demo = gr.Interface(
fn=process_text,
inputs=gr.Textbox(
label="Paste French medical text",
placeholder="Le patient présente une hypertension artérielle...",
lines=5
),
outputs=gr.HighlightedText(),
#outputs=gr.HTML(label="Identified Medical Entities"),
title="French Healthcare NER Demo | As featured in 'NLP on OCI'",
description="""
🔬 Live demo of the French Healthcare NER model built in Chapter 6 of the book 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
📚 Follow along with the book to build this exact model step-by-step
🏥 Perfect for medical text analysis, clinical studies, and healthcare compliance
⚡ Model Trained on Oracle Cloud Infrastructure (OCI)
By [Hicham Assoudi] - AI Researcher (Ph.D.) • Oracle Consultant • Author
""",
examples=[
["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires."],
["Le médecin recommande des corticoïdes pour réduire l'inflammation dans les poumons."],
["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."],
["Pour gérer le diabète, le médecin prescrit une insulinothérapie."],
["Après une blessure musculaire, le patient doit suivre une physiothérapie."],
["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."],
["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
]
)
# Add marketing elements
with gr.Blocks() as marketing_elements:
gr.Markdown("""
### 📖 Get the Complete Guide
Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
- ✓ Step-by-step implementation
- ✓ Performance optimization
- ✓ Enterprise deployment patterns
- ✓ Complete source code
[Get the Book](https://a.co/d/eg7my5G)
""")
with gr.Row():
email_input = gr.Textbox(
label="Get the French Healthcare NER Dataset",
placeholder="Enter your business email"
)
submit_btn = gr.Button("Access Dataset")
# Launch the Gradio demo
if __name__ == "__main__":
demo.launch()
|