hassoudi commited on
Commit
f020d40
·
verified ·
1 Parent(s): 2768dbb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -27
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import gradio as gr
2
- from huggingface_hub import login
3
  from transformers import pipeline
4
  import os
5
 
@@ -10,39 +9,20 @@ def load_healthcare_ner_pipeline():
10
  """Load the Hugging Face pipeline for Healthcare NER."""
11
  global ner_pipeline
12
  if ner_pipeline is None:
13
- #login(token=os.environ["HFTOKEN"])
14
  ner_pipeline = pipeline(
15
  "token-classification",
16
  model="TypicaAI/HealthcareNER-Fr",
17
- #use_auth_token=os.environ["HFTOKEN"],
18
  aggregation_strategy="first" # Groups B- and I- tokens into entities
19
  )
20
  return ner_pipeline
21
 
 
22
  def process_text(text):
23
  """Process input text and return highlighted entities."""
24
  pipeline = load_healthcare_ner_pipeline()
25
  entities = pipeline(text)
26
  return {"text": text, "entities": entities}
27
 
28
- # Highlight entities in the text
29
- #html_output = highlight_entities(text, entities)
30
- # Log usage
31
- #log_demo_usage(text, len(entities))
32
- #return html_output
33
-
34
- """
35
- def highlight_entities(text, entities):
36
- #Highlight identified entities in the input text.
37
- highlighted_text = text
38
- for entity in entities:
39
- entity_text = entity["word"]
40
- highlighted_text = highlighted_text.replace(
41
- entity_text,
42
- f'<mark style="background-color: yellow;">{entity_text}</mark>'
43
- )
44
- return f"<p>{highlighted_text}</p>"
45
- """
46
 
47
  def log_demo_usage(text, num_entities):
48
  """Log demo usage for analytics."""
@@ -60,16 +40,21 @@ demo = gr.Interface(
60
  #outputs=gr.HTML(label="Identified Medical Entities"),
61
  title="French Healthcare NER Demo | As featured in 'NLP on OCI'",
62
  description="""
63
- 🔬 Live demo of the French Healthcare NER model built in Chapter 5 of 'NLP on OCI'
64
 
65
  📚 Follow along with the book to build this exact model step-by-step
66
  🏥 Perfect for medical text analysis, clinical studies, and healthcare compliance
67
- Powered by Oracle Cloud Infrastructure
68
 
69
- By [Hicham Assoudi] - Oracle Consultant & AI Researcher
70
  """,
71
  examples=[
72
- ["Le patient souffre d'hypertension et diabète de type 2. Traitement: Metformine 500mg."],
 
 
 
 
 
73
  ["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
74
  ]
75
  )
@@ -79,13 +64,13 @@ with gr.Blocks() as marketing_elements:
79
  gr.Markdown("""
80
  ### 📖 Get the Complete Guide
81
 
82
- Learn how to build and deploy this exact model in 'NLP on OCI'
83
  - ✓ Step-by-step implementation
84
  - ✓ Performance optimization
85
  - ✓ Enterprise deployment patterns
86
  - ✓ Complete source code
87
 
88
- [Get the Book](your-book-link) | Use code `NERSPACE` for 15% off
89
  """)
90
 
91
  with gr.Row():
 
1
  import gradio as gr
 
2
  from transformers import pipeline
3
  import os
4
 
 
9
  """Load the Hugging Face pipeline for Healthcare NER."""
10
  global ner_pipeline
11
  if ner_pipeline is None:
 
12
  ner_pipeline = pipeline(
13
  "token-classification",
14
  model="TypicaAI/HealthcareNER-Fr",
 
15
  aggregation_strategy="first" # Groups B- and I- tokens into entities
16
  )
17
  return ner_pipeline
18
 
19
+
20
  def process_text(text):
21
  """Process input text and return highlighted entities."""
22
  pipeline = load_healthcare_ner_pipeline()
23
  entities = pipeline(text)
24
  return {"text": text, "entities": entities}
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  def log_demo_usage(text, num_entities):
28
  """Log demo usage for analytics."""
 
40
  #outputs=gr.HTML(label="Identified Medical Entities"),
41
  title="French Healthcare NER Demo | As featured in 'NLP on OCI'",
42
  description="""
43
+ 🔬 Live demo of the French Healthcare NER model built in Chapter 6 of the book 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
44
 
45
  📚 Follow along with the book to build this exact model step-by-step
46
  🏥 Perfect for medical text analysis, clinical studies, and healthcare compliance
47
+ Model Trained on Oracle Cloud Infrastructure (OCI)
48
 
49
+ By [Hicham Assoudi] - AI Researcher (Ph.D.) • Oracle Consultant Author
50
  """,
51
  examples=[
52
+ ["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires."],
53
+ ["Le médecin recommande des corticoïdes pour réduire l'inflammation dans les poumons."],
54
+ ["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."],
55
+ ["Pour gérer le diabète, le médecin prescrit une insulinothérapie."],
56
+ ["Après une blessure musculaire, le patient doit suivre une physiothérapie."],
57
+ ["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."],
58
  ["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
59
  ]
60
  )
 
64
  gr.Markdown("""
65
  ### 📖 Get the Complete Guide
66
 
67
+ Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
68
  - ✓ Step-by-step implementation
69
  - ✓ Performance optimization
70
  - ✓ Enterprise deployment patterns
71
  - ✓ Complete source code
72
 
73
+ [Get the Book](https://a.co/d/eg7my5G)
74
  """)
75
 
76
  with gr.Row():