Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import login
|
3 |
-
from transformers import
|
4 |
import os
|
5 |
-
import torch
|
6 |
|
7 |
-
# Initialize global
|
8 |
-
|
9 |
-
tokenizer = None
|
10 |
|
11 |
-
def
|
12 |
-
"""Load the
|
13 |
-
global
|
14 |
-
if
|
15 |
login(token=os.environ["HF_TOKEN"])
|
16 |
-
|
17 |
-
"
|
18 |
-
|
|
|
|
|
19 |
)
|
20 |
-
|
21 |
-
return model, tokenizer
|
22 |
|
23 |
def process_text(text):
|
24 |
"""Process input text and return highlighted entities."""
|
25 |
-
|
26 |
-
|
27 |
-
outputs = model(**inputs)
|
28 |
-
|
29 |
-
# Decode entities from outputs
|
30 |
-
entities = extract_entities(outputs, tokenizer, text)
|
31 |
|
32 |
# Highlight entities in the text
|
33 |
html_output = highlight_entities(text, entities)
|
@@ -37,35 +32,14 @@ def process_text(text):
|
|
37 |
|
38 |
return html_output
|
39 |
|
40 |
-
def extract_entities(outputs, tokenizer, text):
|
41 |
-
"""Extract entities from model outputs."""
|
42 |
-
tokens = tokenizer.tokenize(text)
|
43 |
-
predictions = torch.argmax(outputs.logits, dim=2).squeeze().tolist()
|
44 |
-
|
45 |
-
entities = []
|
46 |
-
current_entity = None
|
47 |
-
for token, prediction in zip(tokens, predictions):
|
48 |
-
label = model.config.id2label[prediction]
|
49 |
-
if label.startswith("B-"):
|
50 |
-
if current_entity:
|
51 |
-
entities.append(current_entity)
|
52 |
-
current_entity = {"entity": label[2:], "text": token, "start": len(text)}
|
53 |
-
elif label.startswith("I-") and current_entity:
|
54 |
-
current_entity["text"] += f" {token}"
|
55 |
-
elif current_entity:
|
56 |
-
entities.append(current_entity)
|
57 |
-
current_entity = None
|
58 |
-
if current_entity:
|
59 |
-
entities.append(current_entity)
|
60 |
-
return entities
|
61 |
-
|
62 |
def highlight_entities(text, entities):
|
63 |
"""Highlight identified entities in the input text."""
|
64 |
highlighted_text = text
|
65 |
for entity in entities:
|
|
|
66 |
highlighted_text = highlighted_text.replace(
|
67 |
-
|
68 |
-
f'<mark style="background-color: yellow;">{
|
69 |
)
|
70 |
return f"<p>{highlighted_text}</p>"
|
71 |
|
@@ -122,4 +96,3 @@ with gr.Blocks() as marketing_elements:
|
|
122 |
# Launch the Gradio demo
|
123 |
if __name__ == "__main__":
|
124 |
demo.launch()
|
125 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import login
|
3 |
+
from transformers import pipeline
|
4 |
import os
|
|
|
5 |
|
6 |
+
# Initialize global pipeline
|
7 |
+
ner_pipeline = None
|
|
|
8 |
|
9 |
+
def load_healthcare_ner_pipeline():
|
10 |
+
"""Load the Hugging Face pipeline for Healthcare NER."""
|
11 |
+
global ner_pipeline
|
12 |
+
if ner_pipeline is None:
|
13 |
login(token=os.environ["HF_TOKEN"])
|
14 |
+
ner_pipeline = pipeline(
|
15 |
+
"token-classification",
|
16 |
+
model="TypicaAI/HealthcareNER-Fr",
|
17 |
+
use_auth_token=os.environ["HF_TOKEN"],
|
18 |
+
aggregation_strategy="simple" # Groups B- and I- tokens into entities
|
19 |
)
|
20 |
+
return ner_pipeline
|
|
|
21 |
|
22 |
def process_text(text):
|
23 |
"""Process input text and return highlighted entities."""
|
24 |
+
pipeline = load_healthcare_ner_pipeline()
|
25 |
+
entities = pipeline(text)
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Highlight entities in the text
|
28 |
html_output = highlight_entities(text, entities)
|
|
|
32 |
|
33 |
return html_output
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def highlight_entities(text, entities):
|
36 |
"""Highlight identified entities in the input text."""
|
37 |
highlighted_text = text
|
38 |
for entity in entities:
|
39 |
+
entity_text = entity["word"]
|
40 |
highlighted_text = highlighted_text.replace(
|
41 |
+
entity_text,
|
42 |
+
f'<mark style="background-color: yellow;">{entity_text}</mark>'
|
43 |
)
|
44 |
return f"<p>{highlighted_text}</p>"
|
45 |
|
|
|
96 |
# Launch the Gradio demo
|
97 |
if __name__ == "__main__":
|
98 |
demo.launch()
|
|