Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,79 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import login
|
|
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def load_healthcare_ner():
|
6 |
-
|
7 |
-
model
|
8 |
-
|
9 |
-
token=os.environ["HF_TOKEN"]
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def process_text(text):
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
html_output = highlight_entities(text, entities)
|
17 |
-
|
|
|
18 |
log_demo_usage(text, len(entities))
|
|
|
19 |
return html_output
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
demo = gr.Interface(
|
22 |
fn=process_text,
|
23 |
inputs=gr.Textbox(
|
@@ -42,7 +98,7 @@ demo = gr.Interface(
|
|
42 |
]
|
43 |
)
|
44 |
|
45 |
-
# Add
|
46 |
with gr.Blocks() as marketing_elements:
|
47 |
gr.Markdown("""
|
48 |
### 📖 Get the Complete Guide
|
@@ -61,4 +117,9 @@ with gr.Blocks() as marketing_elements:
|
|
61 |
label="Get the French Healthcare NER Dataset",
|
62 |
placeholder="Enter your business email"
|
63 |
)
|
64 |
-
submit_btn = gr.Button("Access Dataset")
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import login
|
3 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
4 |
import os
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Initialize global model and tokenizer
|
8 |
+
model = None
|
9 |
+
tokenizer = None
|
10 |
|
11 |
def load_healthcare_ner():
|
12 |
+
"""Load the Healthcare NER model and tokenizer."""
|
13 |
+
global model, tokenizer
|
14 |
+
if model is None or tokenizer is None:
|
15 |
+
login(token=os.environ["HF_TOKEN"])
|
16 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
17 |
+
"TypicaAI/HealthcareNER-Fr",
|
18 |
+
use_auth_token=os.environ["HF_TOKEN"]
|
19 |
+
)
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("TypicaAI/HealthcareNER-Fr")
|
21 |
+
return model, tokenizer
|
22 |
|
23 |
def process_text(text):
|
24 |
+
"""Process input text and return highlighted entities."""
|
25 |
+
model, tokenizer = load_healthcare_ner()
|
26 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True)
|
27 |
+
outputs = model(**inputs)
|
28 |
+
|
29 |
+
# Decode entities from outputs
|
30 |
+
entities = extract_entities(outputs, tokenizer, text)
|
31 |
+
|
32 |
+
# Highlight entities in the text
|
33 |
html_output = highlight_entities(text, entities)
|
34 |
+
|
35 |
+
# Log usage
|
36 |
log_demo_usage(text, len(entities))
|
37 |
+
|
38 |
return html_output
|
39 |
|
40 |
+
def extract_entities(outputs, tokenizer, text):
|
41 |
+
"""Extract entities from model outputs."""
|
42 |
+
tokens = tokenizer.tokenize(text)
|
43 |
+
predictions = torch.argmax(outputs.logits, dim=2).squeeze().tolist()
|
44 |
+
|
45 |
+
entities = []
|
46 |
+
current_entity = None
|
47 |
+
for token, prediction in zip(tokens, predictions):
|
48 |
+
label = model.config.id2label[prediction]
|
49 |
+
if label.startswith("B-"):
|
50 |
+
if current_entity:
|
51 |
+
entities.append(current_entity)
|
52 |
+
current_entity = {"entity": label[2:], "text": token, "start": len(text)}
|
53 |
+
elif label.startswith("I-") and current_entity:
|
54 |
+
current_entity["text"] += f" {token}"
|
55 |
+
elif current_entity:
|
56 |
+
entities.append(current_entity)
|
57 |
+
current_entity = None
|
58 |
+
if current_entity:
|
59 |
+
entities.append(current_entity)
|
60 |
+
return entities
|
61 |
+
|
62 |
+
def highlight_entities(text, entities):
|
63 |
+
"""Highlight identified entities in the input text."""
|
64 |
+
highlighted_text = text
|
65 |
+
for entity in entities:
|
66 |
+
highlighted_text = highlighted_text.replace(
|
67 |
+
entity["text"],
|
68 |
+
f'<mark style="background-color: yellow;">{entity["text"]}</mark>'
|
69 |
+
)
|
70 |
+
return f"<p>{highlighted_text}</p>"
|
71 |
+
|
72 |
+
def log_demo_usage(text, num_entities):
|
73 |
+
"""Log demo usage for analytics."""
|
74 |
+
print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
|
75 |
+
|
76 |
+
# Define the Gradio interface
|
77 |
demo = gr.Interface(
|
78 |
fn=process_text,
|
79 |
inputs=gr.Textbox(
|
|
|
98 |
]
|
99 |
)
|
100 |
|
101 |
+
# Add marketing elements
|
102 |
with gr.Blocks() as marketing_elements:
|
103 |
gr.Markdown("""
|
104 |
### 📖 Get the Complete Guide
|
|
|
117 |
label="Get the French Healthcare NER Dataset",
|
118 |
placeholder="Enter your business email"
|
119 |
)
|
120 |
+
submit_btn = gr.Button("Access Dataset")
|
121 |
+
|
122 |
+
# Launch the Gradio demo
|
123 |
+
if __name__ == "__main__":
|
124 |
+
demo.launch()
|
125 |
+
|