Spaces:
Running
Running
File size: 3,925 Bytes
a350303 a4f3cd1 f33c0ca b9cfeca a4f3cd1 a350303 a4f3cd1 9f1d16e b9cfeca a4f3cd1 f33c0ca f020d40 f33c0ca b9cfeca a4f3cd1 0726629 b9cfeca 4c42d5a b9cfeca f33c0ca 4c42d5a e4219fa 7cd1b9b e4219fa 7cd1b9b f8a83d0 7cd1b9b a685e31 7cd1b9b e4219fa f33c0ca e4219fa f33c0ca e4219fa b9cfeca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
from transformers import pipeline
import os
# Initialize global pipeline
ner_pipeline = None
def load_healthcare_ner_pipeline():
"""Load the Hugging Face pipeline for Healthcare NER."""
global ner_pipeline
if ner_pipeline is None:
ner_pipeline = pipeline(
"token-classification",
model="TypicaAI/HealthcareNER-Fr",
aggregation_strategy="first" # Groups B- and I- tokens into entities
)
return ner_pipeline
def process_text(text):
"""Process input text and return highlighted entities."""
pipeline = load_healthcare_ner_pipeline()
entities = pipeline(text)
return {"text": text, "entities": entities}
def log_demo_usage(text, num_entities):
"""Log demo usage for analytics."""
print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
# Define the Gradio interface
# Define the main demo interface
demo = gr.Interface(
fn=process_text,
inputs=gr.Textbox(
label="Paste French medical text",
placeholder="Le patient présente une hypertension artérielle...",
lines=5
),
outputs=gr.HighlightedText(),
#outputs=gr.HTML(label="Identified Medical Entities"),
title="French Healthcare NER Demo",
description="""
As featured in _Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face_.
[Get the Book](https://a.co/d/eg7my5G)
🔬 **Live Demo**: Demonstration of the French Healthcare NER model from Chapter 6 of the book.
📚 **Educational Focus**: Step-by-step guidance on model building, from design to deployment.
🏥 **Applications**: Healthcare NLP for text analysis, clinical studies, and compliance.
⚡ **Built on OCI**: Trained using Oracle Cloud Infrastructure's AI capabilities.
---
### **Disclaimer**
This is a **demo model** provided for educational purposes. It was trained on a limited dataset and is not intended for production use, clinical decision-making, or real-world medical applications.
---
_By **Hicham Assoudi** – AI Researcher (Ph.D.), Oracle Consultant, and Author._
""",
examples=[
["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires e.g. pneumonie."],
["Dans le cas de l'asthme, le médecin peut recommander des corticoïdes pour réduire l'inflammation dans les poumons."],
["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."],
["Si le patient souffre de diabète de type 2, le médecin peut prescrire une insulinothérapie par exemple: Metformine 500mg."],
["Après une blessure musculaire ou une maladies douloureuses des tendons comme une tendinopathie, le patient pourrait suivre une kinésithérapie ou une physiothérapie."],
["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."],
["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
]
)
# Add marketing elements
with gr.Blocks() as marketing_elements:
gr.Markdown("""
### 📖 Get the Complete Guide
Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
- ✓ Step-by-step implementation
- ✓ Performance optimization
- ✓ Enterprise deployment patterns
- ✓ Complete source code
[Get the Book](https://a.co/d/eg7my5G)
""")
with gr.Row():
email_input = gr.Textbox(
label="Get the French Healthcare NER Dataset",
placeholder="Enter your business email"
)
submit_btn = gr.Button("Access Dataset")
# Launch the Gradio demo
if __name__ == "__main__":
demo.launch()
|