File size: 4,764 Bytes
a350303
a4f3cd1
f33c0ca
b9cfeca
a4f3cd1
 
a350303
a4f3cd1
 
 
 
 
 
 
9f1d16e
b9cfeca
a4f3cd1
f33c0ca
f020d40
f33c0ca
b9cfeca
a4f3cd1
 
0726629
 
b9cfeca
 
 
 
 
4c42d5a
 
 
b9cfeca
f33c0ca
4c42d5a
 
e4219fa
 
 
 
 
 
 
 
 
 
 
7cd1b9b
e4219fa
7cd1b9b
e4219fa
 
 
 
 
 
 
7cd1b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4219fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f33c0ca
e4219fa
 
 
f33c0ca
e4219fa
b9cfeca
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
from transformers import pipeline
import os

# Initialize global pipeline
ner_pipeline = None

def load_healthcare_ner_pipeline():
    """Load the Hugging Face pipeline for Healthcare NER."""
    global ner_pipeline
    if ner_pipeline is None:
        ner_pipeline = pipeline(
            "token-classification",
            model="TypicaAI/HealthcareNER-Fr",
            aggregation_strategy="first"  # Groups B- and I- tokens into entities
        )
    return ner_pipeline


def process_text(text):
    """Process input text and return highlighted entities."""
    pipeline = load_healthcare_ner_pipeline()
    entities = pipeline(text)
    return {"text": text, "entities": entities}


def log_demo_usage(text, num_entities):
    """Log demo usage for analytics."""
    print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")




# Define the Gradio interface


# Define the main demo interface


demo = gr.Interface(
    fn=process_text,
    inputs=gr.Textbox(
        label="Paste French medical text",
        placeholder="Le patient présente une hypertension artérielle...",
        lines=5
    ),
    outputs=gr.HighlightedText(),
    #outputs=gr.HTML(label="Identified Medical Entities"),
    title="French Healthcare NER Demo",
    description="""
    As featured in **Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face**.
    🔬 Live demo of the French Healthcare NER model built in Chapter 6 of the book 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
    
    📚 Follow along with the book to build this exact model step-by-step
    🏥 Perfect for medical text analysis, clinical studies, and healthcare compliance
    ⚡ Model Trained on Oracle Cloud Infrastructure (OCI)
    
    By [Hicham Assoudi] - AI Researcher (Ph.D.) • Oracle Consultant • Author 
    # French Healthcare NER Demo
    As featured in _Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face_.
    
    ### 🔬 Live Demo
    Experience a demonstration of the French Healthcare NER model described in Chapter 6 of the book.
    
    ### 📚 Educational Focus
    Learn step-by-step how to build this model, from architecture decisions to deployment.
    
    ### 🏥 Applications
    Explore the potential of healthcare NLP for medical text analysis, clinical studies, and compliance.
    
    ### ⚡ Built on OCI
    The model was trained on Oracle Cloud Infrastructure (OCI) to leverage its AI capabilities.
    
    ---
    
    ### **Disclaimer**
    This is a **demo model** provided for educational purposes. It was trained on a limited dataset and is not intended for production use, clinical decision-making, or real-world medical applications.
    
    ---
    
    _By **Hicham Assoudi** – AI Researcher (Ph.D.), Oracle Consultant, and Author._

    """,
    examples=[
        ["Le medecin donne des antibiotiques en cas d'infections des voies respiratoires e.g. pneumonie."],
        ["Dans le cas de l'asthme, le médecin peut recommander des corticoïdes pour réduire l'inflammation dans les poumons."],
        ["Pour soulager les symptômes d'allergie, le médecin prescrit des antihistaminiques."],
        ["Si le patient souffre de diabète de type 2, le médecin peut prescrire une insulinothérapie par exemple: Metformine 500mg."],
        ["Après une blessure musculaire ou une maladies douloureuses des tendons comme une tendinopathie, le patient pourrait suivre une kinésithérapie ou une physiothérapie."],
        ["En cas d'infection bactérienne, le médecin recommande une antibiothérapie."],
        ["Antécédents: infarctus du myocarde en 2019. Allergie à la pénicilline."]
    ]
)

# Add marketing elements
with gr.Blocks() as marketing_elements:
    gr.Markdown("""
    ### 📖 Get the Complete Guide
    
    Learn how to build and deploy this exact model in 'Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-Based NLP Solutions Using Oracle AI and Hugging Face Kindle Edition'
    - ✓ Step-by-step implementation
    - ✓ Performance optimization
    - ✓ Enterprise deployment patterns
    - ✓ Complete source code
    
    [Get the Book](https://a.co/d/eg7my5G)
    """)
    
    with gr.Row():
        email_input = gr.Textbox(
            label="Get the French Healthcare NER Dataset",
            placeholder="Enter your business email"
        )
        submit_btn = gr.Button("Access Dataset")

# Launch the Gradio demo
if __name__ == "__main__":
    demo.launch()