File size: 26,529 Bytes
30d7ae2
19e1ed6
0cfd18e
26c97a9
0cfd18e
 
 
 
 
 
 
 
d559082
 
0cfd18e
 
19e1ed6
 
0cfd18e
 
 
 
 
 
 
139f757
0cfd18e
 
 
fdebc65
0cfd18e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0586d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfd18e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26c97a9
30d7ae2
 
 
 
 
fdebc65
1c688b1
fdebc65
30d7ae2
 
139f757
d559082
 
fd09ea6
 
 
 
 
 
139f757
fd09ea6
 
 
 
 
 
fdebc65
fd09ea6
 
 
 
 
 
d559082
fd09ea6
139f757
 
 
fdebc65
139f757
1c688b1
 
139f757
 
 
 
 
 
 
30d7ae2
 
 
 
 
 
 
 
 
 
 
 
 
1c688b1
 
 
 
fdebc65
1c688b1
 
 
 
 
fdebc65
1c688b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d7ae2
1c688b1
 
d559082
 
 
fdebc65
 
d559082
 
0cfd18e
16c5c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdebc65
 
fd09ea6
 
 
fdebc65
 
fd09ea6
 
16c5c11
1c688b1
d559082
30d7ae2
 
16c5c11
 
30d7ae2
fdebc65
16c5c11
 
 
 
 
 
 
fdebc65
16c5c11
 
 
fdebc65
 
d559082
 
 
 
 
fdebc65
 
d559082
 
fdebc65
d559082
 
1c688b1
 
d559082
fdebc65
d559082
 
 
 
30d7ae2
fdebc65
 
 
26c97a9
1c688b1
fd09ea6
30d7ae2
1c688b1
fdebc65
 
30d7ae2
1c688b1
fd09ea6
fdebc65
 
fd09ea6
fdebc65
 
 
fd09ea6
fdebc65
 
 
1c688b1
fd09ea6
1c688b1
fd09ea6
fdebc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd09ea6
fdebc65
fd09ea6
fdebc65
1c688b1
fd09ea6
1c688b1
 
 
 
fd09ea6
26c97a9
fd09ea6
30d7ae2
 
 
f38c379
1c688b1
f38c379
 
 
fdebc65
30d7ae2
f38c379
 
 
 
 
 
 
1c688b1
 
 
f38c379
 
 
 
 
30d7ae2
1c688b1
fdebc65
30d7ae2
1c688b1
fdebc65
30d7ae2
 
fd09ea6
1c688b1
 
fd09ea6
 
 
 
 
30d7ae2
1c688b1
30d7ae2
fd09ea6
1c688b1
 
 
 
 
30d7ae2
1c688b1
 
30d7ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c688b1
30d7ae2
 
 
 
1c688b1
30d7ae2
 
 
 
1c688b1
 
 
30d7ae2
 
 
 
1c688b1
30d7ae2
 
 
fdebc65
 
 
1c688b1
30d7ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfd18e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import os
import torch
import glob
import gc
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer,
    BitsAndBytesConfig, 
    TrainingArguments, 
    Trainer,
    DataCollatorForLanguageModeling,
    AutoTokenizer,
    LlamaConfig,
    AutoConfig
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator
import subprocess
import sys
import json
import shutil

# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"

hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"

# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"

# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1

# Multi-GPU configuration
accelerator = Accelerator()

# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"

# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
    print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")

def seq2seq_causal_collator(features):
    """
    Collator that concatenates context (input_ids) and target (labels)
    for Causal LM sequence-to-sequence training.
    Masks the loss for the context part of the sequence.
    Pads sequences to the maximum length in the batch.
    """
    batch = {}
    concatenated_input_ids = []
    concatenated_labels = []
    max_len = 0

    # --- First pass: Concatenate, create masked labels, find max length ---
    for feature in features:
        # Dataset transform should provide tensors here
        input_ids = feature['input_ids']
        labels = feature['labels']

        # Ensure tensors are 1D (handle potential extra dims if any)
        if input_ids.dim() > 1: input_ids = input_ids.squeeze()
        if labels.dim() > 1: labels = labels.squeeze()

        context_len = input_ids.shape[0]
        target_len = labels.shape[0]

        # Concatenate context and target for input
        combined_ids = torch.cat([input_ids, labels], dim=0)
        concatenated_input_ids.append(combined_ids)

        # Create labels: -100 for context, actual labels for target
        masked_labels = torch.cat([
            torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
            labels
        ], dim=0)
        concatenated_labels.append(masked_labels)

        # Track max length for padding
        if combined_ids.shape[0] > max_len:
            max_len = combined_ids.shape[0]

    # --- Second pass: Pad to max length ---
    padded_input_ids = []
    padded_labels = []
    input_pad_token_id = 0
    label_pad_token_id = -100

    for i in range(len(features)):
        ids = concatenated_input_ids[i]
        lbls = concatenated_labels[i]

        padding_len = max_len - ids.shape[0]

        # Pad on the right side
        padded_input_ids.append(torch.nn.functional.pad(
            ids, (0, padding_len), value=input_pad_token_id
        ))
        padded_labels.append(torch.nn.functional.pad(
            lbls, (0, padding_len), value=label_pad_token_id
        ))

    # --- Stack and create final batch ---
    batch['input_ids'] = torch.stack(padded_input_ids)
    batch['labels'] = torch.stack(padded_labels)

    # Create attention mask (1 for real tokens, 0 for padding)
    batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()

    return batch

def prepare_for_dataset(batch):
    output = {'input_ids': [], 'labels': []}
    for item in batch:
        output['input_ids'].append(item['input_ids'].cpu().tolist())
        output['labels'].append(item['labels'].cpu().tolist())
    return output

def load_model():
    print(f"Loading base model architecture from: {hf_model_repo_id}")
    
    # Get information about GPU with most free memory
    gpu_id = 0  # Default to first GPU
    max_free_memory = 0
    
    for i in range(torch.cuda.device_count()):
        free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
        if free_memory > max_free_memory:
            max_free_memory = free_memory
            gpu_id = i
    
    print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
    
    # Configure quantization
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16
    )
    
    # Load the model
    try:
        # First update transformers to make sure we have latest version
        subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
        
        # Now try loading with explicit config class to avoid auto-detection issues
        from transformers import LlamaConfig
        
        # Load config first
        config = LlamaConfig.from_pretrained(
            hf_model_repo_id,
            trust_remote_code=True
        )
        
        # Then load model with explicit config
        model = AutoModelForCausalLM.from_pretrained(
            hf_model_repo_id,
            config=config,
            quantization_config=bnb_config,
            device_map="auto",
            trust_remote_code=True
        )
        log.append(f"Loaded model vocab size: {model.config.vocab_size}")
        log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
    except Exception as e:
        error_msg = f"Error loading model from Hub: {e}"
        log.append(error_msg)
        # Try with a fallback method
        try:
            log.append("Attempting alternative loading method...")
            # Try loading without auto detection
            model = AutoModelForCausalLM.from_pretrained(
                hf_model_repo_id,
                quantization_config=bnb_config,
                device_map="auto",
                trust_remote_code=True,
                torch_dtype=torch.bfloat16,
                # Add these to help with the loading
                revision="main",
                low_cpu_mem_usage=True,
            )
            log.append("Alternative loading successful!")
            log.append(f"Loaded model vocab size: {model.config.vocab_size}")
        except Exception as e2:
            log.append(f"Alternative loading also failed: {e2}")
            return "\n".join(log)
    
    # Try to load the tokenizer from the model repository directly
    progress(0.3, desc="Loading tokenizer...")
    try:
        # First attempt: Try loading from local path
        tokenizer = AutoTokenizer.from_pretrained(
            local_model_path,
            padding_side="right",
            use_fast=True,
        )
        log.append("Tokenizer loaded from local files")
    except Exception as e:
        log.append(f"Could not load tokenizer from local files: {e}")
        
        # Second attempt: Try loading directly from HF repo
        try:
            log.append("Attempting to load tokenizer directly from Hugging Face...")
            tokenizer = AutoTokenizer.from_pretrained(
                hf_model_repo_id,
                padding_side="right",
                use_fast=True,
            )
            log.append("Tokenizer loaded from Hugging Face repository")
        except Exception as e2:
            # Third attempt: Try loading a compatible tokenizer
            log.append(f"Could not load tokenizer from repo: {e2}")
            log.append("Attempting to load a compatible LlamaTokenizer...")
            try:
                from transformers import LlamaTokenizer
                
                # Try Meta's standard Llama tokenizer
                tokenizer = LlamaTokenizer.from_pretrained(
                    "meta-llama/Llama-2-7b-hf",  # Standard Llama tokenizer
                    padding_side="right",
                    use_fast=False,  # Try the Python version
                )
                log.append("Loaded a compatible LlamaTokenizer as fallback")
            except Exception as e3:
                error_msg = f"Failed to load any compatible tokenizer: {e3}"
                log.append(error_msg)
                return "\n".join(log)

    # Set pad token if not already set
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        log.append("Set pad_token to eos_token")
    
    print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
    
    # Print information about input embeddings
    print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
    
    # Prepare model for k-bit training
    model = prepare_model_for_kbit_training(model)
    
    # Define LoRA configuration
    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        target_modules=[
            "q_proj",
            "k_proj",
            "v_proj",
            "o_proj",
            "gate_proj",
            "up_proj",
            "down_proj",
        ],
        lora_dropout=0.05,
        bias="none",
        task_type=TaskType.CAUSAL_LM
    )
    
    # Apply LoRA to model
    model = get_peft_model(model, lora_config)
    model.print_trainable_parameters()
    
    return model, tokenizer  # Return both model and tokenizer

def load_dataset():
    # --- Download the dataset repository files ---
    try:
        os.makedirs(local_download_path, exist_ok=True)
        downloaded_repo_root = snapshot_download(
            repo_id=hf_dataset_repo_id,
            repo_type="dataset",
            local_dir=local_download_path,
            local_dir_use_symlinks=False
        )
        print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
    except Exception as e:
        print(f"Error downloading dataset: {e}")
        return None
    
    # --- Load .pt files into a Hugging Face Dataset object ---
    pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
    all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
    
    if not all_pair_files:
        all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
        if not all_pair_files:
            print("No RVQ pair files found!")
            return None
    
    print(f"Found {len(all_pair_files)} RVQ pair files.")
    
    # Load data from .pt files into memory
    all_data_pairs = []
    for file_path in tqdm(all_pair_files, desc="Loading pair files"):
        try:
            episode_pairs = torch.load(file_path, map_location='cpu')
            all_data_pairs.extend(episode_pairs)
        except Exception as e:
            print(f"Warning: Could not load file {file_path}: {e}")
    
    if not all_data_pairs:
        return None
    
    print(f"Loaded {len(all_data_pairs)} training pairs.")
    
    # Convert to Hugging Face Dataset
    chunk_size = 1000
    processed_data = {'input_ids': [], 'labels': []}
    for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
        batch = all_data_pairs[i:i + chunk_size]
        prepared_batch = prepare_for_dataset(batch)
        processed_data['input_ids'].extend(prepared_batch['input_ids'])
        processed_data['labels'].extend(prepared_batch['labels'])
    
    hf_dataset = Dataset.from_dict(processed_data)
    
    # Transform to get tensors back
    hf_dataset.set_transform(lambda batch: {
        'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
        'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
    })
    
    # Cleanup
    del all_data_pairs
    del processed_data
    gc.collect()
    
    return hf_dataset

# Memory cleaning function
def clean_memory():
    gc.collect()
    if torch.cuda.is_available():
        for i in range(torch.cuda.device_count()):
            with torch.cuda.device(f'cuda:{i}'):
                torch.cuda.empty_cache()
                torch.cuda.reset_peak_memory_stats()

def train_model(
    hf_username, 
    model_repo_name, 
    dataset_repo_name, 
    epochs=1, 
    batch_size=4,  # Increased for A100
    grad_accum_steps=4,
    learning_rate=2e-4,
    progress=gr.Progress()
):
    progress(0, desc="Setting up environment...")
    log = []
    
    # Clean up any existing model files to save space
    if os.path.exists("./model_files"):
        try:
            shutil.rmtree("./model_files")
        except Exception as e:
            log.append(f"Warning: Could not remove existing model files: {e}")
    
    if os.path.exists("./downloaded_dataset_files"):
        try:
            shutil.rmtree("./downloaded_dataset_files")
        except Exception as e:
            log.append(f"Warning: Could not remove existing dataset files: {e}")
            
    # Print GPU info - using imported torch, not a local variable
    if torch.cuda.is_available():
        log.append(f"Available GPUs: {torch.cuda.device_count()}")
        for i in range(torch.cuda.device_count()):
            gpu_name = torch.cuda.get_device_name(i)
            gpu_memory = torch.cuda.get_device_properties(i).total_memory / (1024**3)
            log.append(f"GPU {i}: {gpu_name} with {gpu_memory:.2f} GB")
    
    # Import required libraries
    try:
        from datasets import Dataset
        from huggingface_hub import snapshot_download
        # Don't import torch again, since it's already imported
        import transformers
        from transformers import AutoModelForCausalLM, AutoTokenizer
        from transformers import BitsAndBytesConfig, TrainingArguments, Trainer
        from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
        
        log.append(f"Transformers version: {transformers.__version__}")
        log.append(f"PyTorch version: {torch.__version__}")
    except ImportError as e:
        log.append(f"Error importing libraries: {e}")
        return "\n".join(log)
    
    # --- Configuration ---
    progress(0.05, desc="Setting up configuration...")
    hf_model_repo_id = f"{hf_username}/{model_repo_name}"
    hf_dataset_repo_id = f"{hf_username}/{dataset_repo_name}"
    
    log.append(f"Model repo: {hf_model_repo_id}")
    log.append(f"Dataset repo: {hf_dataset_repo_id}")
    
    # Check if running on multiple GPUs
    n_gpus = torch.cuda.device_count()
    log.append(f"Number of GPUs available: {n_gpus}")
    
    # --- DeepSpeed Configuration ---
    # Create DeepSpeed config file
    progress(0.1, desc="Setting up DeepSpeed configuration...")
    
    # Create a simpler config since we have plenty of memory on A100
    ds_config = {
        "bf16": {
            "enabled": "auto"
        },
        "zero_optimization": {
            "stage": 1,  # Lower stage is fine for A100-80GB
            "contiguous_gradients": True,
            "overlap_comm": True
        },
        "gradient_accumulation_steps": grad_accum_steps,
        "gradient_clipping": 1.0,
        "train_batch_size": batch_size * grad_accum_steps * max(1, n_gpus)
    }
    
    ds_config_path = "ds_config.json"
    with open(ds_config_path, "w") as f:
        json.dump(ds_config, f, indent=4)
    
    log.append("DeepSpeed configuration created successfully")
    
    # --- Download and Load Model ---
    progress(0.15, desc="Downloading model...")
    
    try:
        # Download model files
        local_model_path = "./model_files"
        snapshot_download(
            repo_id=hf_model_repo_id,
            local_dir=local_model_path,
            use_auth_token=False,
            resume_download=True
        )
        log.append(f"Model files downloaded to {local_model_path}")
        
        # Check and fix the model config if needed
        config_path = os.path.join(local_model_path, "config.json")
        if os.path.exists(config_path):
            with open(config_path, 'r') as f:
                config_data = json.load(f)
            
            # Fix the rope_scaling configuration
            if 'rope_scaling' in config_data:
                if not isinstance(config_data['rope_scaling'], dict):
                    config_data['rope_scaling'] = {"type": "linear", "factor": 2.0}
                elif 'rope_type' in config_data['rope_scaling']:
                    # Convert complex rope_scaling to the simple format expected
                    rope_factor = config_data['rope_scaling'].get('factor', 2.0)
                    config_data['rope_scaling'] = {"type": "linear", "factor": rope_factor}
                
                # Write the updated config back
                with open(config_path, 'w') as f:
                    json.dump(config_data, f, indent=2)
                log.append("Updated model configuration for rope_scaling")
        
        # Create a bnb configuration for loading the model in 4-bit
        progress(0.25, desc="Loading model...")
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=False
        )
        
        # Load the model with fixed configuration
        model = AutoModelForCausalLM.from_pretrained(
            local_model_path,
            quantization_config=bnb_config,
            device_map="auto",
            use_cache=False,  # Needed for gradient checkpointing
            torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
        )
        
        # Load the tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            local_model_path,
            padding_side="right",
            use_fast=True,
        )
        tokenizer.pad_token = tokenizer.eos_token
        
        # Find model's architecture type
        model_type = model.config.model_type
        log.append(f"Model architecture type: {model_type}")
        
        # PEFT Configuration (Smaller LoRA for faster iteration)
        model = prepare_model_for_kbit_training(model)
        log.append("Model prepared for k-bit training")
        
        lora_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM,
            r=16,  # Keeping higher rank for A100
            lora_alpha=32,
            lora_dropout=0.05,
            bias="none",
            target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]  # Fewer modules for faster training
        )
        peft_model = get_peft_model(model, lora_config)
        trainable_params = peft_model.print_trainable_parameters()
        log.append(f"LoRA applied to model")
        model_to_train = peft_model
    
    except Exception as e:
        error_msg = f"Error preparing model for training: {str(e)}"
        log.append(error_msg)
        return "\n".join(log)
    
    # --- Download and Process Dataset ---
    progress(0.4, desc="Downloading dataset...")
    
    try:
        dataset_path = "./downloaded_dataset_files"
        snapshot_download(
            repo_id=hf_dataset_repo_id,
            local_dir=dataset_path,
            use_auth_token=False,
            resume_download=True
        )
        log.append(f"Dataset repository content downloaded to: {dataset_path}")
        
        # Load dataset from PT files
        progress(0.5, desc="Processing dataset...")
        
        # Load RVQ pairs
        pair_files = glob.glob(f"{dataset_path}/*_rvq_pairs.pt")
        log.append(f"Found {len(pair_files)} RVQ pair files.")
        
        all_pairs = []
        for file in pair_files:
            pairs = torch.load(file)
            all_pairs.extend(pairs)
        
        log.append(f"Loaded a total of {len(all_pairs)} training pairs into memory.")
        
        # Process pairs into a format suitable for training
        all_texts = []
        for pair in all_pairs:
            # Create instruction format
            if isinstance(pair, dict):
                instruction = pair.get("instruction", "")
                input_text = pair.get("input", "")
                output = pair.get("output", "")
                
                # ALPACA format
                if instruction and input_text:
                    text = f"### Instruction: {instruction}\n### Input: {input_text}\n### Response: {output}"
                elif instruction:
                    text = f"### Instruction: {instruction}\n### Response: {output}"
                else:
                    text = output
            else:
                # Simple prompt-completion format
                if isinstance(pair, tuple) and len(pair) == 2:
                    prompt, completion = pair
                    text = f"{prompt}{completion}"
                else:
                    text = str(pair)
            
            all_texts.append({"text": text})
        
        # Create HF dataset
        train_dataset = Dataset.from_list(all_texts)
        
        # Function to tokenize the dataset
        def tokenize_function(examples):
            return tokenizer(
                examples["text"],
                padding=False,
                truncation=True,
                max_length=2048,
                return_tensors=None,
            )
        
        # Tokenize the dataset
        tokenized_dataset = train_dataset.map(
            tokenize_function,
            batched=True,
            remove_columns=["text"],
            desc="Tokenizing dataset",
        )
        
        train_dataset = tokenized_dataset
        
        # Data collator
        from transformers import DataCollatorForLanguageModeling
        
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer, 
            mlm=False
        )
        
    except Exception as e:
        error_msg = f"Error loading dataset: {str(e)}"
        log.append(error_msg)
        return "\n".join(log)
    
    # --- Training Arguments ---
    progress(0.75, desc="Setting up training arguments...")
    output_dir = f"./results_{model_repo_name}"
    os.makedirs(output_dir, exist_ok=True)
    
    # Optimize settings for A100
    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=float(epochs),
        per_device_train_batch_size=batch_size,
        gradient_accumulation_steps=grad_accum_steps,
        learning_rate=learning_rate,
        weight_decay=0.01,
        logging_dir=f"{output_dir}/logs",
        logging_steps=10,
        save_steps=100,
        save_total_limit=3,
        remove_unused_columns=False,
        push_to_hub=False,
        disable_tqdm=False,
        warmup_ratio=0.03,
        lr_scheduler_type="cosine",
        report_to="tensorboard",
        bf16=True if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else False,
        gradient_checkpointing=True,  # Still useful for efficiency
        gradient_checkpointing_kwargs={'use_reentrant': False},
        ddp_find_unused_parameters=False,
        deepspeed=ds_config_path if n_gpus > 1 else None,  # Only use DeepSpeed for multi-GPU
    )
    
    # --- Initialize Trainer ---
    progress(0.8, desc="Initializing trainer...")
    trainer = Trainer(
        model=model_to_train,
        args=training_args,
        train_dataset=train_dataset,
        data_collator=data_collator,
    )
    
    log.append("Trainer initialized for training.")
    
    # --- Start Training ---
    # Clear cache before starting
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    
    try:
        progress(0.85, desc="Starting training...")
        log.append("Starting training...")
        train_result = trainer.train()
        progress(0.95, desc="Saving model...")
    
        # Save final model (adapter weights) and training state
        final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
        log.append(f"Saving final model checkpoint to {final_save_path}...")
        trainer.save_model(final_save_path)
        trainer.save_state()
    
        # Log metrics
        metrics = train_result.metrics
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        
        for key, value in metrics.items():
            log.append(f"{key}: {value}")
    
    except Exception as e:
        error_msg = f"An error occurred during training: {e}"
        log.append(error_msg)
        return "\n".join(log)
    
    progress(1.0, desc="Training complete!")
    log.append("Training process complete.")
    return "\n".join(log)

# Define the Gradio interface
def create_interface():
    with gr.Blocks(title="Llama 3.2 1B RVQ Fine-tuning") as demo:
        gr.Markdown("# Llama 3.2 1B RVQ LoRA Fine-tuning")
        gr.Markdown("Fine-tune a Llama 3.2 1B model with RVQ token embeddings using LoRA")
        
        with gr.Row():
            with gr.Column():
                hf_username = gr.Textbox(label="HuggingFace Username", value="Twelve2five")
                model_repo = gr.Textbox(label="Model Repository Name", value="llama-3.2-1b-rvq")
                dataset_repo = gr.Textbox(label="Dataset Repository Name", value="podcast-dialogue-rvq-pairs-3items")
            
            with gr.Column():
                epochs = gr.Number(label="Number of Epochs", value=3, minimum=1, maximum=10)
                batch_size = gr.Number(label="Batch Size per Device", value=4, minimum=1, maximum=16)
                grad_accum = gr.Number(label="Gradient Accumulation Steps", value=2, minimum=1, maximum=16)
                lr = gr.Number(label="Learning Rate", value=2e-4)
        
        start_btn = gr.Button("Start Training")
        output = gr.Textbox(label="Training Log", lines=20)
        
        start_btn.click(
            fn=train_model,
            inputs=[hf_username, model_repo, dataset_repo, epochs, batch_size, grad_accum, lr],
            outputs=output
        )
        
    return demo

# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
    demo.launch()