Spaces:
Sleeping
Sleeping
File size: 26,529 Bytes
30d7ae2 19e1ed6 0cfd18e 26c97a9 0cfd18e d559082 0cfd18e 19e1ed6 0cfd18e 139f757 0cfd18e fdebc65 0cfd18e 0586d21 0cfd18e 26c97a9 30d7ae2 fdebc65 1c688b1 fdebc65 30d7ae2 139f757 d559082 fd09ea6 139f757 fd09ea6 fdebc65 fd09ea6 d559082 fd09ea6 139f757 fdebc65 139f757 1c688b1 139f757 30d7ae2 1c688b1 fdebc65 1c688b1 fdebc65 1c688b1 30d7ae2 1c688b1 d559082 fdebc65 d559082 0cfd18e 16c5c11 fdebc65 fd09ea6 fdebc65 fd09ea6 16c5c11 1c688b1 d559082 30d7ae2 16c5c11 30d7ae2 fdebc65 16c5c11 fdebc65 16c5c11 fdebc65 d559082 fdebc65 d559082 fdebc65 d559082 1c688b1 d559082 fdebc65 d559082 30d7ae2 fdebc65 26c97a9 1c688b1 fd09ea6 30d7ae2 1c688b1 fdebc65 30d7ae2 1c688b1 fd09ea6 fdebc65 fd09ea6 fdebc65 fd09ea6 fdebc65 1c688b1 fd09ea6 1c688b1 fd09ea6 fdebc65 fd09ea6 fdebc65 fd09ea6 fdebc65 1c688b1 fd09ea6 1c688b1 fd09ea6 26c97a9 fd09ea6 30d7ae2 f38c379 1c688b1 f38c379 fdebc65 30d7ae2 f38c379 1c688b1 f38c379 30d7ae2 1c688b1 fdebc65 30d7ae2 1c688b1 fdebc65 30d7ae2 fd09ea6 1c688b1 fd09ea6 30d7ae2 1c688b1 30d7ae2 fd09ea6 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 fdebc65 1c688b1 30d7ae2 0cfd18e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
import os
import torch
import glob
import gc
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
AutoTokenizer,
LlamaConfig,
AutoConfig
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator
import subprocess
import sys
import json
import shutil
# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"
# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1
# Multi-GPU configuration
accelerator = Accelerator()
# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
def seq2seq_causal_collator(features):
"""
Collator that concatenates context (input_ids) and target (labels)
for Causal LM sequence-to-sequence training.
Masks the loss for the context part of the sequence.
Pads sequences to the maximum length in the batch.
"""
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# --- First pass: Concatenate, create masked labels, find max length ---
for feature in features:
# Dataset transform should provide tensors here
input_ids = feature['input_ids']
labels = feature['labels']
# Ensure tensors are 1D (handle potential extra dims if any)
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
# Concatenate context and target for input
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
# Create labels: -100 for context, actual labels for target
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
# Track max length for padding
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# --- Second pass: Pad to max length ---
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
# Pad on the right side
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# --- Stack and create final batch ---
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
# Create attention mask (1 for real tokens, 0 for padding)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
def load_model():
print(f"Loading base model architecture from: {hf_model_repo_id}")
# Get information about GPU with most free memory
gpu_id = 0 # Default to first GPU
max_free_memory = 0
for i in range(torch.cuda.device_count()):
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
if free_memory > max_free_memory:
max_free_memory = free_memory
gpu_id = i
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
# Configure quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load the model
try:
# First update transformers to make sure we have latest version
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
# Now try loading with explicit config class to avoid auto-detection issues
from transformers import LlamaConfig
# Load config first
config = LlamaConfig.from_pretrained(
hf_model_repo_id,
trust_remote_code=True
)
# Then load model with explicit config
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
except Exception as e:
error_msg = f"Error loading model from Hub: {e}"
log.append(error_msg)
# Try with a fallback method
try:
log.append("Attempting alternative loading method...")
# Try loading without auto detection
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
# Add these to help with the loading
revision="main",
low_cpu_mem_usage=True,
)
log.append("Alternative loading successful!")
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
except Exception as e2:
log.append(f"Alternative loading also failed: {e2}")
return "\n".join(log)
# Try to load the tokenizer from the model repository directly
progress(0.3, desc="Loading tokenizer...")
try:
# First attempt: Try loading from local path
tokenizer = AutoTokenizer.from_pretrained(
local_model_path,
padding_side="right",
use_fast=True,
)
log.append("Tokenizer loaded from local files")
except Exception as e:
log.append(f"Could not load tokenizer from local files: {e}")
# Second attempt: Try loading directly from HF repo
try:
log.append("Attempting to load tokenizer directly from Hugging Face...")
tokenizer = AutoTokenizer.from_pretrained(
hf_model_repo_id,
padding_side="right",
use_fast=True,
)
log.append("Tokenizer loaded from Hugging Face repository")
except Exception as e2:
# Third attempt: Try loading a compatible tokenizer
log.append(f"Could not load tokenizer from repo: {e2}")
log.append("Attempting to load a compatible LlamaTokenizer...")
try:
from transformers import LlamaTokenizer
# Try Meta's standard Llama tokenizer
tokenizer = LlamaTokenizer.from_pretrained(
"meta-llama/Llama-2-7b-hf", # Standard Llama tokenizer
padding_side="right",
use_fast=False, # Try the Python version
)
log.append("Loaded a compatible LlamaTokenizer as fallback")
except Exception as e3:
error_msg = f"Failed to load any compatible tokenizer: {e3}"
log.append(error_msg)
return "\n".join(log)
# Set pad token if not already set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
log.append("Set pad_token to eos_token")
print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
# Print information about input embeddings
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
# Prepare model for k-bit training
model = prepare_model_for_kbit_training(model)
# Define LoRA configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM
)
# Apply LoRA to model
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, tokenizer # Return both model and tokenizer
def load_dataset():
# --- Download the dataset repository files ---
try:
os.makedirs(local_download_path, exist_ok=True)
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
print(f"Error downloading dataset: {e}")
return None
# --- Load .pt files into a Hugging Face Dataset object ---
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
print("No RVQ pair files found!")
return None
print(f"Found {len(all_pair_files)} RVQ pair files.")
# Load data from .pt files into memory
all_data_pairs = []
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
print(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
return None
print(f"Loaded {len(all_data_pairs)} training pairs.")
# Convert to Hugging Face Dataset
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
return hf_dataset
# Memory cleaning function
def clean_memory():
gc.collect()
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(f'cuda:{i}'):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def train_model(
hf_username,
model_repo_name,
dataset_repo_name,
epochs=1,
batch_size=4, # Increased for A100
grad_accum_steps=4,
learning_rate=2e-4,
progress=gr.Progress()
):
progress(0, desc="Setting up environment...")
log = []
# Clean up any existing model files to save space
if os.path.exists("./model_files"):
try:
shutil.rmtree("./model_files")
except Exception as e:
log.append(f"Warning: Could not remove existing model files: {e}")
if os.path.exists("./downloaded_dataset_files"):
try:
shutil.rmtree("./downloaded_dataset_files")
except Exception as e:
log.append(f"Warning: Could not remove existing dataset files: {e}")
# Print GPU info - using imported torch, not a local variable
if torch.cuda.is_available():
log.append(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
gpu_name = torch.cuda.get_device_name(i)
gpu_memory = torch.cuda.get_device_properties(i).total_memory / (1024**3)
log.append(f"GPU {i}: {gpu_name} with {gpu_memory:.2f} GB")
# Import required libraries
try:
from datasets import Dataset
from huggingface_hub import snapshot_download
# Don't import torch again, since it's already imported
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig, TrainingArguments, Trainer
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
log.append(f"Transformers version: {transformers.__version__}")
log.append(f"PyTorch version: {torch.__version__}")
except ImportError as e:
log.append(f"Error importing libraries: {e}")
return "\n".join(log)
# --- Configuration ---
progress(0.05, desc="Setting up configuration...")
hf_model_repo_id = f"{hf_username}/{model_repo_name}"
hf_dataset_repo_id = f"{hf_username}/{dataset_repo_name}"
log.append(f"Model repo: {hf_model_repo_id}")
log.append(f"Dataset repo: {hf_dataset_repo_id}")
# Check if running on multiple GPUs
n_gpus = torch.cuda.device_count()
log.append(f"Number of GPUs available: {n_gpus}")
# --- DeepSpeed Configuration ---
# Create DeepSpeed config file
progress(0.1, desc="Setting up DeepSpeed configuration...")
# Create a simpler config since we have plenty of memory on A100
ds_config = {
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 1, # Lower stage is fine for A100-80GB
"contiguous_gradients": True,
"overlap_comm": True
},
"gradient_accumulation_steps": grad_accum_steps,
"gradient_clipping": 1.0,
"train_batch_size": batch_size * grad_accum_steps * max(1, n_gpus)
}
ds_config_path = "ds_config.json"
with open(ds_config_path, "w") as f:
json.dump(ds_config, f, indent=4)
log.append("DeepSpeed configuration created successfully")
# --- Download and Load Model ---
progress(0.15, desc="Downloading model...")
try:
# Download model files
local_model_path = "./model_files"
snapshot_download(
repo_id=hf_model_repo_id,
local_dir=local_model_path,
use_auth_token=False,
resume_download=True
)
log.append(f"Model files downloaded to {local_model_path}")
# Check and fix the model config if needed
config_path = os.path.join(local_model_path, "config.json")
if os.path.exists(config_path):
with open(config_path, 'r') as f:
config_data = json.load(f)
# Fix the rope_scaling configuration
if 'rope_scaling' in config_data:
if not isinstance(config_data['rope_scaling'], dict):
config_data['rope_scaling'] = {"type": "linear", "factor": 2.0}
elif 'rope_type' in config_data['rope_scaling']:
# Convert complex rope_scaling to the simple format expected
rope_factor = config_data['rope_scaling'].get('factor', 2.0)
config_data['rope_scaling'] = {"type": "linear", "factor": rope_factor}
# Write the updated config back
with open(config_path, 'w') as f:
json.dump(config_data, f, indent=2)
log.append("Updated model configuration for rope_scaling")
# Create a bnb configuration for loading the model in 4-bit
progress(0.25, desc="Loading model...")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False
)
# Load the model with fixed configuration
model = AutoModelForCausalLM.from_pretrained(
local_model_path,
quantization_config=bnb_config,
device_map="auto",
use_cache=False, # Needed for gradient checkpointing
torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
local_model_path,
padding_side="right",
use_fast=True,
)
tokenizer.pad_token = tokenizer.eos_token
# Find model's architecture type
model_type = model.config.model_type
log.append(f"Model architecture type: {model_type}")
# PEFT Configuration (Smaller LoRA for faster iteration)
model = prepare_model_for_kbit_training(model)
log.append("Model prepared for k-bit training")
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=16, # Keeping higher rank for A100
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] # Fewer modules for faster training
)
peft_model = get_peft_model(model, lora_config)
trainable_params = peft_model.print_trainable_parameters()
log.append(f"LoRA applied to model")
model_to_train = peft_model
except Exception as e:
error_msg = f"Error preparing model for training: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# --- Download and Process Dataset ---
progress(0.4, desc="Downloading dataset...")
try:
dataset_path = "./downloaded_dataset_files"
snapshot_download(
repo_id=hf_dataset_repo_id,
local_dir=dataset_path,
use_auth_token=False,
resume_download=True
)
log.append(f"Dataset repository content downloaded to: {dataset_path}")
# Load dataset from PT files
progress(0.5, desc="Processing dataset...")
# Load RVQ pairs
pair_files = glob.glob(f"{dataset_path}/*_rvq_pairs.pt")
log.append(f"Found {len(pair_files)} RVQ pair files.")
all_pairs = []
for file in pair_files:
pairs = torch.load(file)
all_pairs.extend(pairs)
log.append(f"Loaded a total of {len(all_pairs)} training pairs into memory.")
# Process pairs into a format suitable for training
all_texts = []
for pair in all_pairs:
# Create instruction format
if isinstance(pair, dict):
instruction = pair.get("instruction", "")
input_text = pair.get("input", "")
output = pair.get("output", "")
# ALPACA format
if instruction and input_text:
text = f"### Instruction: {instruction}\n### Input: {input_text}\n### Response: {output}"
elif instruction:
text = f"### Instruction: {instruction}\n### Response: {output}"
else:
text = output
else:
# Simple prompt-completion format
if isinstance(pair, tuple) and len(pair) == 2:
prompt, completion = pair
text = f"{prompt}{completion}"
else:
text = str(pair)
all_texts.append({"text": text})
# Create HF dataset
train_dataset = Dataset.from_list(all_texts)
# Function to tokenize the dataset
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding=False,
truncation=True,
max_length=2048,
return_tensors=None,
)
# Tokenize the dataset
tokenized_dataset = train_dataset.map(
tokenize_function,
batched=True,
remove_columns=["text"],
desc="Tokenizing dataset",
)
train_dataset = tokenized_dataset
# Data collator
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
except Exception as e:
error_msg = f"Error loading dataset: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# --- Training Arguments ---
progress(0.75, desc="Setting up training arguments...")
output_dir = f"./results_{model_repo_name}"
os.makedirs(output_dir, exist_ok=True)
# Optimize settings for A100
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=float(epochs),
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=grad_accum_steps,
learning_rate=learning_rate,
weight_decay=0.01,
logging_dir=f"{output_dir}/logs",
logging_steps=10,
save_steps=100,
save_total_limit=3,
remove_unused_columns=False,
push_to_hub=False,
disable_tqdm=False,
warmup_ratio=0.03,
lr_scheduler_type="cosine",
report_to="tensorboard",
bf16=True if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else False,
gradient_checkpointing=True, # Still useful for efficiency
gradient_checkpointing_kwargs={'use_reentrant': False},
ddp_find_unused_parameters=False,
deepspeed=ds_config_path if n_gpus > 1 else None, # Only use DeepSpeed for multi-GPU
)
# --- Initialize Trainer ---
progress(0.8, desc="Initializing trainer...")
trainer = Trainer(
model=model_to_train,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
log.append("Trainer initialized for training.")
# --- Start Training ---
# Clear cache before starting
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
progress(0.85, desc="Starting training...")
log.append("Starting training...")
train_result = trainer.train()
progress(0.95, desc="Saving model...")
# Save final model (adapter weights) and training state
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
log.append(f"Saving final model checkpoint to {final_save_path}...")
trainer.save_model(final_save_path)
trainer.save_state()
# Log metrics
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
for key, value in metrics.items():
log.append(f"{key}: {value}")
except Exception as e:
error_msg = f"An error occurred during training: {e}"
log.append(error_msg)
return "\n".join(log)
progress(1.0, desc="Training complete!")
log.append("Training process complete.")
return "\n".join(log)
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Llama 3.2 1B RVQ Fine-tuning") as demo:
gr.Markdown("# Llama 3.2 1B RVQ LoRA Fine-tuning")
gr.Markdown("Fine-tune a Llama 3.2 1B model with RVQ token embeddings using LoRA")
with gr.Row():
with gr.Column():
hf_username = gr.Textbox(label="HuggingFace Username", value="Twelve2five")
model_repo = gr.Textbox(label="Model Repository Name", value="llama-3.2-1b-rvq")
dataset_repo = gr.Textbox(label="Dataset Repository Name", value="podcast-dialogue-rvq-pairs-3items")
with gr.Column():
epochs = gr.Number(label="Number of Epochs", value=3, minimum=1, maximum=10)
batch_size = gr.Number(label="Batch Size per Device", value=4, minimum=1, maximum=16)
grad_accum = gr.Number(label="Gradient Accumulation Steps", value=2, minimum=1, maximum=16)
lr = gr.Number(label="Learning Rate", value=2e-4)
start_btn = gr.Button("Start Training")
output = gr.Textbox(label="Training Log", lines=20)
start_btn.click(
fn=train_model,
inputs=[hf_username, model_repo, dataset_repo, epochs, batch_size, grad_accum, lr],
outputs=output
)
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch() |