Spaces:
Sleeping
Sleeping
File size: 3,680 Bytes
b6ab738 1afc2d5 72073e1 1afc2d5 9b4d9ff 1afc2d5 9b4d9ff 1afc2d5 9ede33d 1afc2d5 b6ab738 72073e1 9b4d9ff 72073e1 1afc2d5 72073e1 9b4d9ff 72073e1 b6ab738 1afc2d5 9b4d9ff 1afc2d5 b6ab738 9ede33d 9b4d9ff 9ede33d 9b4d9ff 9ede33d 9b4d9ff 9ede33d 9b4d9ff 9ede33d 9b4d9ff 9ede33d 9b4d9ff 2cb303a 9ede33d 9b4d9ff 9ede33d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from PIL import Image
from threading import Thread
# Initialize model and processor
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
# Functions for chat and image handling
def llava(inputs, history):
"""Processes image + text input with Llava."""
image = Image.open(inputs["files"][0]).convert("RGB")
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
processed = processor(prompt, image, return_tensors="pt").to("cpu")
return processed
def respond(message, history):
"""Generate a response for input."""
if "files" in message and message["files"]:
inputs = llava(message, history)
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
user_message = message["text"]
history.append([user_message, None])
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
response = client_gemma.chat_completion(prompt, max_tokens=200)
bot_message = response["choices"][0]["message"]["content"]
history[-1][1] = bot_message
yield history
def generate_image(prompt):
"""Generates an image."""
client = InferenceClient("KingNish/Image-Gen-Pro")
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
# State management to control visibility
def show_page(page, state):
"""Updates the state to show the selected page."""
return {"chat_visible": page == "chat", "image_visible": page == "image"}
# Gradio app setup
with gr.Blocks(title="AI Chat & Tools") as demo:
state = gr.State({"chat_visible": True, "image_visible": False})
with gr.Row():
with gr.Column(scale=1, min_width=200):
gr.Markdown("## Navigation")
chat_button = gr.Button("Chat Interface")
image_button = gr.Button("Image Generation")
with gr.Column(scale=3):
with gr.Row(visible=lambda state: state["chat_visible"], interactive=True):
gr.Markdown("## Chat with AI Assistant")
chatbot = gr.Chatbot(label="Chat", show_label=False)
text_input = gr.Textbox(placeholder="Enter your message...", lines=2, show_label=False)
file_input = gr.File(label="Upload an image", file_types=["image/*"])
text_input.submit(respond, [text_input, chatbot], [chatbot])
file_input.change(respond, [file_input, chatbot], [chatbot])
with gr.Row(visible=lambda state: state["image_visible"], interactive=True):
gr.Markdown("## Image Generator")
image_prompt = gr.Textbox(placeholder="Describe the image to generate", show_label=False)
image_output = gr.Image(label="Generated Image")
image_prompt.submit(generate_image, [image_prompt], [image_output])
# Button actions to switch between pages
chat_button.click(lambda: show_page("chat", state.value), None, state)
image_button.click(lambda: show_page("image", state.value), None, state)
# Launch the app
demo.launch()
|