Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
import json
|
4 |
-
import uuid
|
5 |
-
from PIL import Image
|
6 |
-
from bs4 import BeautifulSoup
|
7 |
-
import requests
|
8 |
-
import random
|
9 |
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
|
|
|
10 |
from threading import Thread
|
11 |
-
import re
|
12 |
-
import time
|
13 |
-
import torch
|
14 |
|
15 |
# Initialize model and processor
|
16 |
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
|
17 |
processor = LlavaProcessor.from_pretrained(model_id)
|
18 |
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
19 |
|
20 |
-
# Initialize inference clients
|
21 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
22 |
-
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
|
23 |
-
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
24 |
-
client_yi = InferenceClient("01-ai/Yi-1.5-34B-Chat")
|
25 |
-
|
26 |
-
def search(query):
|
27 |
-
"""Performs a Google search and extracts text from the top results."""
|
28 |
-
session = requests.Session()
|
29 |
-
response = session.get(f"https://www.google.com/search?q={query}",
|
30 |
-
headers={"User-Agent": "Mozilla/5.0"})
|
31 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
32 |
-
results = []
|
33 |
-
for result in soup.find_all("div", class_="BNeawe vvjwJb AP7Wnd"):
|
34 |
-
text = result.get_text()
|
35 |
-
link = result.find_parent("a")["href"]
|
36 |
-
results.append(f"{text}: {link}")
|
37 |
-
return "\n".join(results[:3])
|
38 |
|
39 |
def llava(inputs, history):
|
40 |
-
"""Processes an image and text input
|
41 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
42 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
43 |
processed = processor(prompt, image, return_tensors="pt").to("cpu")
|
44 |
return processed
|
45 |
|
46 |
def respond(message, history):
|
47 |
-
"""
|
48 |
if "files" in message and message["files"]:
|
|
|
49 |
inputs = llava(message, history)
|
50 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
51 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
@@ -55,13 +32,21 @@ def respond(message, history):
|
|
55 |
buffer += new_text
|
56 |
yield buffer
|
57 |
else:
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
response = client_gemma.chat_completion(prompt, max_tokens=200)
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def generate_image(prompt):
|
64 |
-
"""Generates an image
|
65 |
client = InferenceClient("KingNish/Image-Gen-Pro")
|
66 |
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
|
67 |
|
@@ -74,30 +59,18 @@ with gr.Blocks() as demo:
|
|
74 |
file_input = gr.File(label="Upload an image")
|
75 |
with gr.Column():
|
76 |
output = gr.Image(label="Generated Image")
|
77 |
-
with gr.Row():
|
78 |
-
search_button = gr.Button("Search Google")
|
79 |
-
image_button = gr.Button("Generate Image")
|
80 |
-
examples = [
|
81 |
-
{"text": "Who are you?"},
|
82 |
-
{"text": "Generate an image of the Eiffel Tower at night."},
|
83 |
-
{"text": "Search for the latest trends on YouTube."},
|
84 |
-
]
|
85 |
|
86 |
-
def handle_text(text,
|
87 |
-
|
88 |
-
return
|
89 |
|
90 |
-
def handle_file_upload(files,
|
91 |
-
|
92 |
-
return
|
93 |
|
94 |
# Connect components to callbacks
|
95 |
-
text_input.submit(handle_text, [text_input], [chatbot])
|
96 |
-
file_input.change(handle_file_upload, [file_input], [chatbot])
|
97 |
-
|
98 |
-
# Search button functionality
|
99 |
-
search_button.click(lambda query: search(query), [text_input], [chatbot])
|
100 |
-
image_button.click(lambda text: generate_image(text), [text_input], [output])
|
101 |
|
102 |
-
# Launch the Gradio
|
103 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
|
4 |
+
from PIL import Image
|
5 |
from threading import Thread
|
|
|
|
|
|
|
6 |
|
7 |
# Initialize model and processor
|
8 |
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
|
9 |
processor = LlavaProcessor.from_pretrained(model_id)
|
10 |
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
11 |
|
12 |
+
# Initialize inference clients
|
13 |
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def llava(inputs, history):
|
16 |
+
"""Processes an image and text input using Llava."""
|
17 |
image = Image.open(inputs["files"][0]).convert("RGB")
|
18 |
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
19 |
processed = processor(prompt, image, return_tensors="pt").to("cpu")
|
20 |
return processed
|
21 |
|
22 |
def respond(message, history):
|
23 |
+
"""Generate a response based on text or image input."""
|
24 |
if "files" in message and message["files"]:
|
25 |
+
# Handle image + text input
|
26 |
inputs = llava(message, history)
|
27 |
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
28 |
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
|
|
32 |
buffer += new_text
|
33 |
yield buffer
|
34 |
else:
|
35 |
+
# Handle text-only input
|
36 |
+
user_message = message["text"]
|
37 |
+
history.append([user_message, None]) # Append user message to history
|
38 |
+
|
39 |
+
# Prepare prompt for the language model
|
40 |
+
prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]]
|
41 |
response = client_gemma.chat_completion(prompt, max_tokens=200)
|
42 |
+
|
43 |
+
# Extract response and update history
|
44 |
+
bot_message = response["choices"][0]["message"]["content"]
|
45 |
+
history[-1][1] = bot_message # Update the last entry with bot's response
|
46 |
+
yield history
|
47 |
|
48 |
def generate_image(prompt):
|
49 |
+
"""Generates an image based on the user prompt."""
|
50 |
client = InferenceClient("KingNish/Image-Gen-Pro")
|
51 |
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
|
52 |
|
|
|
59 |
file_input = gr.File(label="Upload an image")
|
60 |
with gr.Column():
|
61 |
output = gr.Image(label="Generated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
def handle_text(text, history=[]):
|
64 |
+
"""Handle text input and generate responses."""
|
65 |
+
return respond({"text": text}, history), history
|
66 |
|
67 |
+
def handle_file_upload(files, history=[]):
|
68 |
+
"""Handle file uploads and generate responses."""
|
69 |
+
return respond({"files": files, "text": "Describe this image."}, history), history
|
70 |
|
71 |
# Connect components to callbacks
|
72 |
+
text_input.submit(handle_text, [text_input, chatbot], [chatbot])
|
73 |
+
file_input.change(handle_file_upload, [file_input, chatbot], [chatbot])
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# Launch the Gradio app
|
76 |
demo.launch()
|